

EXCHANGE DFC 28 1915

UNIVERSITY OF ILLINOIS BULLETIN

ISSUED WEEKLY

VOL. XIII

SEPTEMBER 13, 1915

No. 2

Entered as second-class matter, Dec. 11, 1912, at the Post Office at Urbana, Ill., under the Act of Ang. 24, 1912

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

by E. C. SCHMIDT, J. M. SNODGRASS AND R. B. KELLER

BULLETIN NO. 82 ENGINEERING EXPERIMENT STATION PUBLISHED BY THE UNIVERSITY OF ILLINOIS, URBANA

PRICE: SIXTY-FIVE CENTS

EUROPEAN AGENT CHAPMAN AND HALL, LTD., LONDON THE Engineering Experiment Station was established by act of the Board of Trustees, December 8, 1903. It is the purpose of the Station to carry on investigations along various lines of engineering and to study problems of importance to professional engineers and to the manufacturing, railway, mining, constructional, and industrial interests of the State.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff and, with the Director, determine the character of the investigations to be undertaken. The work is carried on under the supervision of the staff, sometimes by research fellows as graduate work, sometimes by members of the instructional staff of the College of Engineering, but more frequently by investigators belonging to the Station corps.

The results of these investigations are published in the form of bulletins, which record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions, and governmental testing departments.

The volume and number at the top of the title page of the cover are merely arbitrary numbers and refer to the general publications of the University of Illinois; either above the title or below the seal is given the number of the Engineering Experiment Station bulletin or circular which should be used in referring to these publications.

For copies of Lulleting, circulars, or other information address the Engineering Experiment Station, Urbana, Illinois.

UNIVERSITY OF ILLINOIS **ENGINEERING EXPERIMENT STATION**

BULLETIN No. 82

SEPTEMBER, 1915

ې د مېږېد د مېږې رېژم د د دروند تر د مود و او د ار مړه

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

BY

Edward C. Schmidt,¹ John M. Snodgrass² and Robert B. Keller.³

CONTENTS.

PART I.

-		PAGE
1.	INTRODUCTION	5
	1. Preliminary Statement	5
	2. Purpose of the Tests	5
	3. Acknowledgments	5
II.	Тне Locomotive	6
III.	SUMMARY OF THE RESULTS	7
	4. The Boiler	7
	5. The Engines and the Locomotive	8
IV.	THE TESTS AND THE TEST PROGRAM	8
	6. Series 2	9
	7. Series 1	. 10
	8. Intermediate Tests	. 10
V.	TEST METHODS AND TEST CONDITIONS	. 11
	9. Methods and Equipment	. 11
	10. Conditions	. 11
VI.	THE RESULTS OF THE TEST OF SERIES 2	. 12
	A. Boiler Performance	. 12
	11. General Conditions	. 15
	12. Draft	. 15
	13. Firebox and Front-end Temperatures.	15
	14. Coal Consumption	. 18
	15. Evaporation	. 18
	16. Boiler Horse Power.	18
	17. Economic Performance	. 18
	18. Boiler Efficiency	. 18
	19. Cinder Losses	22
	20. Heat Balances	24

¹Professor of Railway Engineering. ²Assistant Professor of Railway Engineering. ³Formerly First Assistant, Engineering Experiment Station, Railway Engineering Department.

CONTENTS.

			PAG	GE
	В.	Engine	Performance	30
		21.	Dry Steam per Indicated Horse Power Hour,	
			and per Drawbar Horse Power Hour	30
		22.	Indicated Horse Power and Drawbar Horse	
			Power	32
		23.	Machine Friction	34
	C.	Genera	l Performance	42
		24.	Coal Consumption per Indicated Horse Power	
			Hour, and per Drawbar Horse Power Hour	42
		25.	General Efficiency	42
VII.	TH	E RESUL	LTS OF THE TESTS OF SERIES 1	44
	D.	Boiler	Performance	45
		26.	The Range of Performance	45
		27.	Economic Performance	45
		28.	Boiler Efficiency	47
	E.	Engine	e Performance and General Performance	49
		29.	Dry Steam per Indicated Horse Power Hour	49
		30.	Indicated Horse Power	51
		31.	Machine Friction	52
		32.	Coal Consumption per Indicated Horse Power	
			Hour	52
		33.	General Efficiency	52
III.	Co	MPARISO	ON OF THE RESULTS OF SERIES 1 AND 2	52
		34.	Comparison of the Boiler Performance	54
		35.	Comparison of the Cylinder Performance	55

PART II.

APPENDIX	1.	THE LOCOMOTIVE	58
APPENDIX	2.	THE LABORATORY	68
APPENDIX	3.	Test Methods	86
APPENDIX	4.	DETAILED DATA AND RESULTS	91
APPENDIX	5.	METHODS OF CALCULATION	119

2

V

CONTENTS.

LIST OF TABLES.

		PAGE
1.	Test Program-Series 2	9
2.	Test Program-Series 1	9
3.	Boiler Performance-Series 2	13
4.	Boiler Performance-Series 2	14
5.	Heat Balance for Series 2	26
6.	Engine and General Performance-Series 2	27
7.	Engine and General Performance-Series 2	28
8.	Machine Friction-Series 2	40
9.	Boiler Performance-Series 1	46
10.	Engine and General Performance-Series 1	50
11.	Steam Consumption for Comparable Tests of Series 1 and 2	55
12.	Comparison of Water Rate with 5%-in. Nozzle Tip and 5¼-in. Nozzle Tip	56
13.	General Conditions	92
14.	Temperature and Pressure	93
15.	Draft, Injectors, Quality of Steam	94
16.	Coal, Cinders, Ash, Smoke, and Humidity	95
17.	Coal, Cinders, Ash, Smoke, and Humidity	96
18.	Coal Analysis	97
19.	Calorific Value of Coal and Cinders, Analysis of Front-end Gases	98
20.	Water and Drawbar Pull	99
21.	Events of Stroke from Indicator Cards-Cut-off and Release	100
22.	Events of Stroke and Pressure from Indicator Cards-Beginning of Compression	
	and Initial Pressure	101
23.	Pressure from Indicator Cards-Cut-Off and Release	102
24.	Pressure from Indicator Cards-Beginning of Compression and Least Back	
	Pressure	103
25.	Boiler Performance-Coal and Evaporation	104
26.	Boiler Performance-Equivalent Evaporation, Horse Power, and Efficiency	105
27.	Engine Performance-Mean Effective Pressure and Number of Expansions	106
28.	Engine Performance-Indicated Horse Power	107
29.	Engine Performance-Coal, Steam, and B.t.u. per Indicated Horse Power	108
30.	General Performance-Drawbar Horse Power and Millions of Foot Pounds at	
	Drawbar	109
31.	General Performance-Indicated Horse Power, Drawbar Horse Power, and Trac-	
	tive Force	110
32.	General Performance-Machine Friction, Efficiencies, and Ratios	111
33.	Analysis of Ash, Front-end Cinders, and Stack Cinders	112
34.	Heat Balance-British Thermal Units	113
35.	Heat Balance-Percentage	114
36.	Information Concerning the Indicator Diagrams Shown in Fig. 56, 57, and 58	115

LIST OF FIGURES.

1.	Illinois Central Locomotive 958Frontispi	iece
2.	The Relations Between Draft and Rate of Combustion	16
3.	The Relations Between Draft and Rate of Evaporation	16
4.	The Relations Between Firebox and Front-end Temperatures and Rate of Com-	
	bustion	17
5.	The Relations Between Firebox and Front-end Temperatures and Rate of Evap-	
	oration	17
6.	The Relation Between Hourly Evaporation and Hourly Coal Consumption	19
7.	The Relation Between Rate of Evaporation and Rate of Combustion	19
8.	The Relation Between Evaporation per Pound of Coal and Rate of Combustion	20
9.	The Relation Between Evaporation per Pound of Coal and Rate of Evaporation	20
10.	The Relation Between Boiler Efficiency and Rate of Combustion	21

CONTENTS.

	P.	AGE
11.	The Relation Between Boiler Efficiency and Rate of Evaporation	21
12.	The Relation Between Hourly Cinder Discharge and Hourly Coal Consumption.	23
13.	The Relation Between Cinder Discharge and Rate of Combustion	23
14.	The Relation Between Cinder Discharge and Draft	25
15.	The Relation Between the Heating Value of the Cinders and Rate of Com-	
	bustion	25
16.	The Relation Between Steam Consumption and Speed, at Various Cut-offs	29
17.	The Relation Between Steam Consumption and Speed at Various Cut-offs	31
18.	The Relation Between Steam Consumption and Cut-off, at Various Speeds	31
19.	The Relation Between Indicated Horse Power and Speed, at Various Cut-offs	33
20.	The Relation Between Drawbar Horse Power and Speed, at Various Cut-offs	33
21.	The Relation Between Machine Friction and Indicated Horse Power, at Various	
	Speeds	35
22.	The Relation Between Machine Friction and Indicated Horse Power, at Various	
	Speeds	36
23.	The Relation Between Machine Friction Power and Indicated Horse Power, at	0.2
	Various Speeds	36
24.	The Relation Between Machine Friction and Indicated Horse Power, at Various	
	Cut-offs	38
25.	The Relation Between Machine Friction and Indicated Horse Power, at various	
	Cut-offs	39
26.	The Relation Between Machine Friction Power and Indicated Horse Power, at	20
	Various Cut-ons	39
27.	The Relation Between Machine Friction Power and Speed at Various Cut-ons.	41
28.	The Relation Between Machine Friction and Speed at Various Cut-ons	41
29.	The Relation Between Coal Consumed per Indicated Horse Power Hour and	4.9
	Speed, at various Cut-ous	40
30.	The Relation Between Coal Consumed per Drawbar Horse Fower Hour and	4.2
91	The Polation Detween General Frainer and Speed at Various Out offe	40
29	The Relation Between Freneration per Pound of Cosl and Rate of Combustion	47
22.	The Relation Between Evaporation per Found of Coal and Rate of Combustion	41
34	The Relation Between Evapolation per round of Combustion	48
25	The Relation Between Solier Emclency and Rate of Compusion	40
36	The Relation Between Indicated Horse Power and Sneed at Various Cut-offs	51
37	The Relation Between Machine Friction Power and Speed at Various Cut-offs	53
38	The Relation Between Coal Consumed per Indicated Horse Power per Hour and	00
00.	Speed at Various Cut-offs	53
39.	The Relation Between General Efficiency and Sneed, at Various Cut-offs	54
40.	Side Elevation of Illinois Central Railroad Locomotive 958	59
41.	Longitudinal Section through the Boiler	61
42.	Front Elevation of the Locomotive	62
43.	Cross Section through the Front-end and Cylinders	63
44.	Cross Sections through the Firebox	64
45.	The Locomotive Laboratory	69
46.	An Interior View of the Laboratory with Locomotive 958 in Position	70
47.	The Rear End of the Testing Pit, Showing the Removable Track, the Supporting	
	Wheels and their Bearings, and the Brakes	71
48.	An Exterior View of the Brakes	72
49.	The Weighing Head and Pedestal of the Dynamometer	72
50.	The Brake Control Valves, the Dynamometer Scale, the Drawbar and Safety	
	Links, and the Firing Platform	73
51.	One of the Supporting Wheels, with its axle, Bearing, Pedestal, and Bed Plate	75
52.	One of the Brakes	77
53.	Sectional Plan and Elevation of the Laboratory	80
54.	A Cross Section through the Middle of the Laboratory	82
55.	Cross Section through Cinder Collector and Stack	83
56.	Representative Indicator Diagrams for Series 2	116
57.	Representative Indicator Diagrams for Series 2 1	117
58.	Representative Indicator Diagrams for Series 1	18

I. INTRODUCTION.

1. The tests the results of which are here recorded constitute the first work of the recently established locomotive laboratory of the University of Illinois. They relate to a typical consolidation locomotive which was loaned to the University by the Illinois Central Rrailroad.

In Part I of this report the aim has been to present as brief a statement of the conditions and results as is compatible with a clear understanding of the tests. Part II, on the other hand, consists of appendixes in which supplementary detail is fully recorded. In the presentation and discussion of the results in Part I, only the more important facts concerning boiler and engine performance have been included. There remain in the complete record of results given in Appendix 4 many facts which may be of use to those interested in the details of boiler and engine tests. In this, the first publication relating to the work of the laboratory, laboratory equipment and methods are described in detail in order to complete the record and to provide a basis for reference in future publications from which such detail will be omitted.

2. Purpose of the Tests.—The locomotive was first tested in the condition in which it was received from service. It was then subjected to certain repairs some of which affected its performance, and was again fully tested. The main purpose of the tests was to determine the general performance of the locomotive and the performance of its boiler and engines after the repairs were made and when the locomotive was in excellent condition.

3. Acknowledgments.—The locomotive was loaned for the tests through the interest and courtesy of Mr. W. L. Park, Vice President, and Mr. Morgan K. Barnum, General Superintendent of Motive Power, of the Illinois Central Railroad. During the progress of the tests Mr. R. W. Bell, then General Superintendent of Motive Power, and various members of his staff frequently gave assistance and advice to those in charge of the laboratory. It is a pleasure to record here our appreciation of these services.

Mr. Franklin W. Marquis, formerly Associate in the Department of Railway Engineering, was in immediate charge of the laboratory from its establishment until the completion of the first ten tests included in this report. He also had a large share in working out the details of the laboratory design. To him is due the successful solution of many of the problems which arose in putting the equipment in operation and in establishing the test procedure.

We would acknowledge also the assistance received from the numerous members of the laboratory staff and especially from Mr. H. H. Dunn.

II. THE LOCOMOTIVE.

The locomotive tested is of the consolidation (2-8-0) type, built by the Baldwin Locomotive Works in 1909. It weighs 223 000 pounds, and has 22 in. x 30 in. simple cylinders using saturated steam. Its principal dimensions are given below, and a detailed description appears in Appendix 1.

Total weight, in working order, lb	$.223\ 000$
Weight on drivers, lb	$.200\ 900$
Cylinders (simple), diameter and stroke, in	. 22 x 30
Diameter of drivers, in	. 63
Fire-box width, in	. 66
Grate area, sq. ft	. 49.55
Heating surface, tubes (fire side), sq. ft	. 3094
Heating surface, total, sq. ft	. 3283
Boiler pressure, lb. per sq. in	. 200

When it was received at the laboratory, the locomotive had been in service three and one-third years and had run 107 800 miles. Immediately preceding the tests the locomotive had been in service only five weeks after receiving general repairs, and was in good condition when it arrived at the laboratory. It was completely tested in this condition and the results of these tests are designated as Series I. The results of this series disclosed a performance not quite so good as had been anticipated and, in the endeavor to do whatever was possible to improve the performance, valves were reset and eccentric straps shimmed; cylinders and valve chambers were re-bored; new pistons and piston rings, new valve bull-rings and packing rings were applied; rod packing renewed; the exhaust nozzle-tip changed from 51/4 in. to 57/8 in.; and a small leak in one of the steam pipe joints was stopped. Certain incidental repairs having no effect on performance were made at the same time. Following this work the locomotive was run the equivalent of about 1200 miles in wearing down the cylinders and packing before making the tests of Series 2. It should be

emphasized that all of these repairs were resorted to only that nothing which would probably improve the performance be left undone, and that under ordinary service requirements they would have been regarded as quite unnecessary. After their completion the locomotive, then in excellent condition, was subjected to the tests which are designated as Series 2.

Locomotive 958 is a characteristic freight locomotive of whose type there are about twenty thousand on American railways, or one third of the total in service. Its weight and heating surface exceed the average values of these quantities for all consolidation locomotives by about twenty-five per cent. It is in most respects thoroughly representative of its type. Complete laboratory tests of simple consolidation locomotives are not common and include tests of only three different classes, all of which are somewhat smaller than the one here under consideration.*

III. SUMMARY OF THE RESULTS.

While it is not possible to summarize all the results of the tests further than is done in the curves included beyond, it is feasible briefly to state at this point the main facts defining the range through which the locomotive was worked and to indicate the minimum or maximum values of a few of the more important quantities. The statements apply to the tests of Series 1 and 2 combined.

4. The Boiler.—The maximum amount of dry coal fired per hour during any of the tests was 11 127 lb. or 224.5 lb. per square foot of grate per hour, an amount much in excess of what is usual or desirable on hand-fired locomotives in service. The maximum quantity of cinders ejected into the front end and from the stack amounted to 27.4 per cent of the dry coal fired. This cinder loss also is quite unusual and it occurred under conditions which rarely prevail in service, the draft during this test being equivalent to 12.8 inches of water in front of the diaphragm.

During the test in which the heating surface was forced to its greatest activity, the total equivalent evaporation per hour was 57 954 lb., or 17.65 lb. per square foot of heating surface per hour. This rate of evaporation is altogether unusual in service and has been exceeded only rarely under test conditions. The best economic performance of

^{*&}quot;Locomotive Tests and Exhibits" and bulletins No. 7, 8, 9, 12, 13, 15, and 16 published by the Pennsylvania Railroad Company.

the boiler was obtained in test No. 2024 during which the equivalent evaporation per pound of dry coal was 10.07 lb. There is some doubt however about the validity of this result which exceeds the next highest evaporation per pound of coal (8.96 lb.) by 12.4 per cent.

These results were all obtained when using run-of-mine coal from Mission Field Mine, Vermilion County, Illinois, which varied in heating value from 11 835 B.t.u. to 12 848 B.t.u. per pound of dry coal.

5. The Engines and the Locomotive.—The maximum indicated horse power developed during the tests was 1654 which occurred in test No. 2093 with a cut-off of 48.6 per cent and a speed of 30.4 miles per hour. This is the greatest power which has been developed during laboratory tests with a locomotive of this type. The maximum drawbar horse power was 1431. The maximum tractive effort developed, 29 240 lb., is only 75 per cent of the rated maximum and is not significant because of the fact that, as in all laboratory tests, it was not feasible to work the locomotive at the lowest speeds and the greatest cut-offs.

The lowest water rate attained was 27.17 lb. of dry steam per indicated horse power per hour. This steam consumption is not so low as has been previously obtained in tests of locomotives of this type under similar conditions, being almost 17 per cent in excess of the lowest figure previously recorded. The minimum heat content of the dry coal fired per indicated horse power per hour was 50 872 B.t.u. and the minimum dry coal fired per hour per indicated horse power was 4.00 lb. The minimum dry coal fired per hour per drawbar horse power was 4.62 lb.

IV. THE TESTS AND THE TEST PROGRAM.

The locomotive was worked during the tests throughout a range of speed corresponding to that which would ordinarily prevail in service. At each of the various speeds the endeavor was made to vary the cutoff throughout as wide a range as the capacity of the boiler or of the grate would permit. The adhesion between the drivers and the supporting wheels in the laboratory is less however than the adhesion between the drivers and the rail on the road, and consequently it was impossible at low speeds to run at maximum cut-offs. The designations for speed and cut-off used in this section are approximate only, and represent the conditions predetermined for each test. The actual

average values attained during the tests appear in Appendix 4. All tests were run with the throttle wide open.

TABLE 1.

TEST PROGRAM-SERIES 2.

SHOWING TESTS BUN AT VARIOUS SPEEDS AND CUT-OFFS.

Approx Spe	kimate bed	Approximate Cut-off-Per cent of Stroke											
Rev. per Minute	Miles per Hour	16	24	32	40	48	56						
55	10		2081 2086	2075 2097	2085 2096	2095 2098							
110	20	2080 2087	2077	2073	2072	2084	2094						
165	\$0	2083	2078	2074 2092	2082	2093	1999						
220	40	2088	2079	2076	2089		-						

TABLE 2.

TEST PROGRAM—SERIES 1. SHOWING TESTS RUN AT VABIOUS SPEEDS AND CUT-OFFS.

Appro: Spo	ximate eed	Approximate Cut-off-Per cent of Stroke												
Rev. per Minute	Miles per Hour	16	20	24	32	1 0	48							
55	10		Eller el	2024	2028									
83	15	2017 2021		2018 2020	2019 2022	2031								
110	- 20	2026		2027	2029	2035	2033							
138	25	2009		2012	2013	2023								
165	30			2030	2032	2037								
193	35	2016	2010	2015	2014	2034	TR DI							

6. Series 2.—Series 2 comprises 25 tests and includes tests 2072 to 2098 (excepting only tests 2090 and 2091 which are referred to beyond). In this series the speed varied from 10 to 40 miles per hour or from 55 to 220 revolutions per minute, while the cut-off ranged from 16 per cent to 56 per cent of the stroke. The distribution of these tests at the different speeds and cut-offs is shown in Table 1.

As elsewhere explained, (see section II and Appendix 1) the locomotive during this group of tests was in excellent condition, valves having been reset, valve chambers and cylinders rebored, the packing for pistons and valves and rods renewed, a leak in one of the steam pipe joints stopped, and the exhaust nozzle tip changed from 51/4 in. to 5/% in. 7. Series 1.—Series 1 comprises 26 tests and includes tests 2009 to 2037 (excepting No. 2011, 2025, and 2036). Test 2025 is omitted from the record because of errors in water measurement, and tests 2011 and 2036 were discontinued before their completion—one on account of an injector failure, the other on account of a faulty valve in the line supplying oil to the absorption brakes.

In this group of tests the speed varied from 10 to 35 miles per hour or from 55 to 193 revolutions per minute, while the cut-off ranged from 16 per cent to 48 per cent of the stroke. The distribution of these tests at the different speeds and cut-offs is shown in Table 2. During Series 1 the locomotive was in the condition in which it was received at the laboratory, which is distinguished from the condition prevailing during Series 2 by the repairs above cited.

8. Intermediate Tests.—Immediately after the completion of the tests of Series 1, the valves of the locomotive were reset, the eccentric straps shimmed, rod packing replaced, and the valve rings and piston rings were renewed and refitted. After these changes eight tests—No. 2038 to 2045—were run.

These changes, intended to improve cylinder performance, did not materially affect it. Because of them, however, these tests are excluded from Series 1 and their results appear only in Appendix 4. They are not included in any of the figures presented in the report. Since during these eight tests the condition of the boiler was exactly the same as during Series 1, their results relating to boiler performance are comparable with those of that series.

During the progress of Series 2, two tests—No. 2090 and 2091 were run with the nozzle tip changed from 57_8 in. to 51_4 in. With this exception all conditions prevailing in these two tests were the same as in Series 2. These tests are referred to beyond, and their results are separately presented in Appendix 4. They are excluded from Series 2.

In addition to the tests above mentioned, 26 runs (No. 2046-2071) were made for such purposes as to wear down the cylinder and valve chambers after re-boring, to make final choice of exhaust nozzle tip, etc. While these runs were given test numbers, they were incomplete and were not intended to be included in the report. Of the 64 tests made with the expectation that they would be embodied in the report, only the three referred to in paragraph 7 have been excluded from the record.

V. TEST METHODS AND TEST CONDITIONS.

9. Methods and Equipment.—The methods employed in conducting the tests and in deriving the results are explained in detail in Appendixes 3 and 5. They conform in general to those prescribed by the American Railway Master Mechanics' Association code for conducting laboratory tests of locomotives, published in the Proceedings of the Association for 1914. Whatever deviations from this code have been found desirable are indicated in the appendixes.

The laboratory equipment is described in Appendix 2. While this equipment differs in several details from that of other laboratories, the only difference which has materially affected test methods lies in the presence of a cinder separator, through which all the exhaust gases pass and in which the entire body of cinders is collected. Except during one group of tests conducted at the Pennsylvania Railroad testing plant, when temporary provision was made to collect all the cinders issuing from the stack, the cinder discharge has been determined in other laboratory tests merely by sampling the exhaust gas stream.

The design of this cinder separator is illustrated in Appendix 2. Its operation has been entirely successful. Repeated examinations of the exhaust gases as they issued from the separator, and unsuccessful attempts to collect solid matter in the neighborhood of the laboratory stack have made it clear that the separator collects and retains even the finest cinders under all test conditions.*

10. Conditions.—As previously stated the coal used during all the tests came from Mission Field Mine, Vermilion County, Illinois. For all tests to and including No. 2091 run-of-mine coal was used. During tests 2092, 2093, 2094, and 2095 a mixture of run-of-mine and screened lump was used, which in appearance, analysis, and performance was not materially different from the run-of-mine alone. During the last three tests, (2096-2098) on account of a shortage in the supply of run-of-mine coal, $1\frac{1}{2}$ -in. screenings were used. Because of this difference in conditions, all data and all results involving coal are excluded from the record of these three tests.

The locomotive during all tests was fired by C. Welker, a skilled fireman, detailed for this purpose by the Illinois Central Railroad from their regular force. Previous to his engagement at the laboratory, he had had four and one-half years' experience as fireman on this road and upon the completion of the tests returned to their service. Dur-

^{*}The term *cinders* is here used to mean particles of appreciable size as distinguished from impalpable dust. Samples of the stack cinders representing the entire range in rate of combustion contained from 10 to 18 per cent of material which passed a 200 mesh screen.

ing some of the tests he was assisted by one of three other firemen who were also detailed at various times from the local Illinois Central force. None of these men had had less than one year's experience. Mr. Welker in these tests, as in those in which he acted alone, remained in charge and responsible for the character of the work.

The condition of the locomotive has been briefly stated in Section II and is more fully explained in Appendix 1. The test program and the conditions of speed and cut-off have been presented in section IV.

VI. THE RESULTS OF THE TESTS OF SERIES 2.

All the data and the results of the tests of Series 2 are presented in detail in the tables of Appendix 4. There are included in this section only the more important data and results relating to the performance of the boiler, the engines, and the locomotive. These facts are here presented in both tabular and graphical form. In establishing the relations between results chief reliance is placed upon the figures: and the tabular matter, which is a repetition of parts of Appendix 4, is included for convenience of reference only. Except where otherwise specifically stated, the curves in the figures have been produced by averaging the coordinates of various groups of points, plotting these average values, and passing as nearly as possible through the points thus determined a smooth curve. The test designations which appear in the tables indicate first the approximate speed in revolutions per minute, next the nominal cut-off in per cent, and finally the amount of throttle opening. Thus in test 2072, designated as 110-40-F, the speed was about 110 revolutions per minute, the cut-off approximately 40 per cent, and the throttle-as in all the tests-was "full" or wide open.

A. BOILER PERFORMANCE.

The more significant data and results pertaining to the performance of the boiler in Series 2 are collected from Appendix 4 and presented here in Tables 3 and 4, which include nearly all the facts used in producing the figures relating to boiler performance. In both of these tables the tests are arranged in the order of the increasing amounts of dry coal fired per hour per square foot of grate (code No. 627). If this arrangement is borne in mind, some of the relations may be more definitely and quite as conveniently studied in the tables as in the curves.

In attempting to draw from these results inferences concerning the performance of locomotives in service, it should be remembered that

Quality	Steam in the Dome	407	0.9963	0.9963	0.9956	0.9956	0.9962	0.9947	0.9943	0.9934	0.9919	0.9919	0.9915	0.9894	0.9889	0.9895	0.9861	0.9844	0.9896	0.9887	0.9886	0.9879	0.9884
re, Deg. F.	In the Front-end	367	507	506	584	524	545	565	567	568	563	595	595	643	614	620	687	675	653	679	678	702	708
Temperatui	In the Fire-box	374	1407	1881	1418			1570		1267		1662	1597		1688	1643	1662	1785			1458		
	In Front of the Diaphragm	394	2.2	2.5	2.9	2.9	4.0	4.1	5.3	4.8	4.5	5.7	6.0	8.2	7.0	8.0	8.5	9.2	10.0	12.1	11.2	12.8	11.9
of Water	Back of the Diaphragm	395	1.5	4.1	2.0	1.9	2.5	2.5	3.0	2.7	2.9	3.5	8.9	5.1	4.8	4.9	5.8	5.7	6.8	7.8	7.8	7.8	1.7
Draft, in.	In the Fire-box	396	0.7	0.1	1.0	0.9	1.1	1.3	1.5	1.6	1.2	1.6	1.9	2.2	2.3	2.0	2.4	2.8	2.9	8.0	8.4	8.4	3.5
	In the Ash-pan	397	0.2	0.3	0.2	0.2	0.3	0.4	0.4	0.4	0.8	0.5	0.5	0.6	0.4	0.7	0.5	0.5	0.8	0.8	0.6	0.9	0.7
Fired per	Per sq. ft. of Grate	627	39.9	41.7	48.9	49.9	61.7	66.2	67.8	67.4	67.7	87.9	95.0	118.8	116.7	119.6	121.8	158.0	159.7	170.2	181.5	206.2	224.5
Dry Coal	Total	626	1975	2068	2422	2474	3058	3281	8334	3338	3353	4359	4707	5640	5783	5927	6015	7831	7914	8434	8994	10216	11127
Duration	of Test, Minutes		150	140	130	150	120	110	60	100	100	80	10	50	60	60	60	35	50	25	50	30	35
Average Boiler	Pressure, lb. per sq. in.	380	198.2	199.1	198.8	199.2	197.9	196.0	193.1	198.7	197.8	197.6	196.4	198.4	197.4	196.7	197.1	196.0	194.0	196.3	195.2	191.5	194.9
	Designation	CodeItem	55-24-F	55-24-F	110-16-F	110-16-F	55-40-F	110-24-F	55-48-F	165-16-F	220-16-F	110-32-F	165-24-F	165-32-F	220-24-F	110-40-F	165-32-F	220-82-F	110-48-F	110-56-F	165-40-F	165-48-F	220-40-F
E	No.		2081	2086	2080	2087	2085	2077	2095	2083	2088	2078	2078	2092	2079	2072	2074	2076	2084	2094	2082	2093	2089

TABLE 3. BOILER PERFORMANCE—SERIES 2.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

4.	
TABLE	

BOILER PERFORMANCE—SERIES 2.

	Efficiency of the Boiler Including the Grate, per cent	666	66.89	64.49	65.46	65.28	66.63	63.54	61.82	67.61	60.72	64.58	58.92	56.66	56.95	50.18	53.36	53.50	46.41	46.76	50.33	10 11	43.82	11000	11.00
	Calorific Value in Per cent of the B.t.u. Contained in the Dry Coal	460 & 458	44 93	46.69	55.17	44.99	55.34	77.50	66.50	70.78	73.70	71.29	75.69	76.16	81.42	78 13		79.55	88.86	88.90	85.46		01.00 83 51	10.00	CA.TA
	Total in Parcent of the Dry Coal Fired	426	3.5	5.6	1.3	4.3	5.1	7.4	7.7	7.8	8.2	8.5	12.9	14.1	15.1	15.3		15.8	23.4	19.2	23.5	1 00	1.22	0 20	50.0
Cinders	Total per Hour, lb.	424 & 345	69	116	171	104	126	226	253	260	271	283	562	662	855	887		952	1847	1523	1962		0800		7000
	Discharged from the Stack per Hour, lb.	423 & 345	62	110	165	. 26	118	217	245	250	259	273	553	648	841	873	1140	949	1822	1499	1931	9201	0186 0186		A1 67
	Accumulated in the Front-end per Hour, lb.	422 & 345	7.2	6.0	5.6	6.9	7.2	8.5	7.7	10.0	12.6	10.2	9.0	13.7	14.5	14.0		3.0	24.1	24.1	31.0	0.00	0.02	N 00	4.47
1	Calorific Value per lb. of Dry Coal, B. t. u.	458	12 700	12 586	12 718	12 848	12 272	12 622	12 633	12 315	12 660	12 095	12 751	12 517	12 620	12 767	12 460	12 575	12 519	12 305	12 426	10 202	19.551	10 270	000 71
ion, lb.	Per lb. of Dry Coal	658	8.75	8.37	8.57	8.64	8.43	8.26	8.05	8.58	7.92	8.05	7.74	7.31	7.41	6.60	6.85	6.93	5.98	5.93	6.44	R AR	5.67	4 0.4	F C F
ent Evaporat	Per Hour per sq. ft. of Heating Surface	648	5.26	5.27	6.08	6.37	6.35	7.70	8.05	8.72	8.06	8.22	10.27	10.49	12.72	11.62	12.36	12.70	14.27	14.29	16.55	14 93	17.65	1675	5
Equivale	Per Hour	645	17 277	17 308	19 954	20 923	20 846	25 270	26 417	28 614	26448	26 995	33 719	34 431	41 770	38 155	40 590	41 701	46 838	46 913	54 336	10 002	57 954	54 980	20 H D
Dry Coal	Fired, per Hour per sq. ft. of Grate, lb.	627	39.9	41.7	47.0	48.9	49.9	61.7	66.2	67.3	67.4	67.7	6.7.8	95.0	113.8	116.7	119.6	121.3	158.0	159.7	170.2	181.5	206.2	224.5	1
1	Test No.		2081	2086	2075	2080	2087	2085	2077	2095	2083	2088	2073	2078	2092	2079	2072	2074	2076	2084	2094	2082	2093	2089	

14

ILLINOIS ENGINEERING EXPERIMENT STATION

during the tests the boiler was forced somewhat beyond the limits which would ordinarily be maintained in service; so that the maximum test values of such measures of boiler activity as draft, rate of combustion, and rate of evaporation are somewhat greater than the values which would be maintained on the road for any except very short periods.

11. General Conditions.—The average boiler pressure varied during the tests of this series from 191.5 to 199.2 pounds, and the feed temperature ranged between 44.7 and 63.6 degrees. As is common under the uniform conditions of load which are maintained in laboratory tests, the quality of the steam was high and nearly uniform throughout the series, the lowest quality being 0.984 and the highest 0.9963.

The calorific value of the fuel varied between the limits of 10 487 and 11 660 B.t.u. per pound of coal as fired, and from 12 095 to 12 848 B.t.u. per pound of dry coal. The ash in the coal as fired varied from 9.64 to 13.96 per cent.

Of the 25 tests of Series 2, seventeen were of more than one hour's duration. In the remaining eight tests the test period was less than one hour, being in one test only 25 minutes. Even in this test, however, the coal burned amounted to 4095 pounds.

12. Draft.—The relation between the draft values and the rate of combustion is indicated in Fig. 2, and their relation to rate of evaporation in Fig. 3. Inspection of the curve of firebox draft in these figures reveals close agreement between the values represented by the individual points and the average value represented by the curve. This fact may be accepted as an indication of the uniformity with which the fire was managed during the tests.

In test 2093 the drafts in front of the diaphragm, back of the diaphragm, in the firebox, and in the ashpan were 12.8, 7.8, 3.4, and 0.9 inches of water respectively. The rate of combustion in this test was 118.66 pounds of coal per hour. The drafts cited are the maxima attained during this series except in the case of firebox draft which was exceeded by 0.1 of an inch in one other test.

13. Firebox and Front-end Temperatures.—The temperature of the gases in the firebox varied between 1267 and 1785 degrees during the first twelve tests of this series. This temperature was not recorded during the remaining tests because of a break-down in the pyrometer equipment. The relation of this temperature to both rate of combustion and rate of evaporation is exhibited by the upper curves of Fig. 4 and 5 respectively.

EQUIVALENT EVAPORATION PER SQUARE FOOT OF HEATING SURFACE PER HOUR—POUNDS

FIG. 5. THE RELATIONS BETWEEN FIREBOX AND FRONT-END TEMPERATURES AND RATE OF EVAPORATION.

The temperature of the gases in the front-end ranged between 506 and 702 degrees and increased very regularly as the activity of the grate and of the heating surface was increased. The relation of frontend temperature to rate of combustion appears in the lower curve of Fig. 4, and its relation to rate of evaporation in Fig. 5.

14. Coal Consumption.—The smallest amount of fuel fired during any of the tests was 3799 pounds of moist coal or 3334 pounds of dry coal. The greatest amount per test was 8506 pounds of moist coal or 7495 pounds of dry coal. The rate of firing ranged from 1975 pounds of dry coal per hour in test 2081 to 11 127 pounds of dry coal per hour in test 2089. The rate of combustion varied between 39.9 and 224.5 pounds of dry coal per square foot of grate per hour.

15. Evaporation.—The equivalent evaporation per hour varied between the limits of 17 277 and 57 954 pounds. The rate of increase in equivalent evaporation per hour with respect to the hourly consumption of dry coal is exhibited in Fig. 6. In this figure four of the highest values of evaporation are somewhat more divergent from the average represented by the curve than are the values for other tests. These four are all tests of short duration in which the measurement of the coal may be on this account slightly less accurate than in the other tests. Two of them, however, are tests in which the coal used was the mixture of lump and run-of-mine referred to in section V, and this fact may perhaps partially account for their divergence.

The equivalent evaporation per square foot of heating surface per hour varied in this series from 5.26 pounds to 17.65 pounds. Fig. 7 shows the relation of the rate of evaporation to the amount of dry coal fired per square foot of grate per hour.

16. Boiler Horse Power.—Under the usual convention of 34.5 pounds of equivalent evaporation per hour per horse power, the boiler of this locomotive developed a maximum horse power of 1680. This maximum is equivalent to one horse power for each 1.95 square feet of heating surface, or for each 0.295 of a square foot of grate area.

17. Economic Performance.—The equivalent evaporation per pound of dry coal ranged from a minimum of 4.94 to a maximum of 8.75 pounds. This range represents as good a performance as would be expected from the grade of coal used. The lower evaporations per pound of coal were of course obtained with the higher rates of combustion and evaporation. The rate of this decrease in evaporation per pound of dry coal is shown in Fig. 8 and 9, the former showing the decrease with respect to increase in the rate of combustion and the latter with respect to increase in the rate of evaporation. Either of these figures may serve as an index of the general performance of the boiler.

18. Boiler Efficiency.—By efficiency is meant, in this connection, the ratio of the heat absorbed by the boiler to the heat contained in

PER HOUR—POUNDS

FIG. 9. THE RELATION BETWEEN EVAPORATION PER POUND OF COAL AND RATE OF EVAPORTAION.

the coal in the condition in which it was supplied to the fire, and it represents therefore the combined efficiencies of the furnace and of the boiler proper, in producing and utilizing the heat. The maximum efficiency, 67.61 per cent, was obtained in test 2095 with a rate of combustion of 67.3 pounds of dry coal per square foot of grate per hour, which is not quite the lowest rate of combustion occurring during this

2

series. The minimum efficiency, 38.77 per cent, was obtained in test 2089 in which the highest rate of combustion prevailed, namely 224.5 pounds of dry coal per square foot of grate per hour. The relations of efficiency to rate of combustion and to rate of evaporation are shown in Fig. 10 and 11, respectively.

19. Cinder Losses.—The data relating to the cinder losses which occurred during these tests have an especial significance in view of the methods by which they were obtained. The locomotive was equipped with a self-cleaning front-end and the maximum amount of cinders there collected during any test was only 21 pounds. In no test did the weight of front-end cinders amount to more than 0.4 of one per cent of the dry coal fired. For this reason no attempt is made to distinguish between cinders accumulated in the front end and those discharged from the stack, in the discussion here presented, although they are so distinguished in Table 4. In the discussion only the total amounts of cinders formed are referred to. These are substantially the same as the amounts discharged from the stack.

The minimum cinder loss occurred in test 2081, during which cinders were formed at the rate of 69 pounds per hour. The draft in this test was equivalent to 2.2 inches of water in front of the diaphragm, and the rate of combustion was 39.9 pounds of dry coal per square foot of grate per hour. The greatest cinder loss amounted to 2984 pounds per hour and occurred in test 2089, in which the corresponding draft was 11.9 inches of water and the rate of combustion 224.5 pounds of dry coal per square foot of grate per hour. Fig. 12 shows the increase in cinders formed per hour as the amount of coal burned per hour increases.

These cinder losses are more conveniently expressed as percentages of the weight of dry coal fired, and they are so presented in Table 4. Inspection of this table shows the minimum loss to have amounted to 3.5 per cent of the dry coal fired. This loss occurred in test 2081 in which, as above stated, the draft in front of the diaphragm was 2.2 inches of water and 39.9 pounds or dry coal were burned per square foot of grate per hour. The maximum cinder loss amounted to 27.4 per cent of the dry coal fired and occurred in test 2093, when the draft was 12.8 inches and the rate of combustion 206.2 pounds of dry coal per square foot of grate per hour. With few exceptions the cinders increase in amount with every increase in the rate of combustion. Fig. 13 shows the relation between cinder loss in per cent of the dry coal fired and the rate of combustion. The cinder losses have been expressed as percentages of the dry coal rather than of the coal as fired, because of the accidental variations in the moisture content of the latter. For this reason the amounts of dry coal fired have seemed here as elsewhere to offer the more logical basis for computation. If the cinder losses had been based upon moist instead of dry coal they would have been de-

FIG. 12. THE RELATION BETWEEN HOUBLY CINDER DISCHARGE AND HOUBLY COAL CONSUMPTION.

FIG. 13. THE RELATION BETWEEN CINDER DISCHARGE AND RATE OF COMBUSTION.

fined, of course, by smaller percentages. So based, the cinder losses in this series varied between 3.1 and 23.6 per cent.

In service the dry coal fired per square foot of grate per hour probably would rarely exceed 120 pounds. At this rate of combustion Fig. 13 indicates a cinder loss of about 16 per cent. On the road, therefore, except during rare and short intervals, the cinder discharge for this locomotive would probably range between 3 and 16 per cent of the weight of the dry coal fired, when using coal similar to that used during these tests.

The immediate cause of the cinder discharge is of course the intense draft which is essential in locomotive boiler operation. The relation of the cinder loss to draft is shown in Fig. 14 in which the ordinates represent cinder discharge in percentages of the dry coal, and the abscissae the draft in the front-end in front of the diaphragm. Fig. 14 shows the cinder discharge to have been almost directly proportional to draft.

The heating value of the einders varied greatly, depending on the speed of their transit through the furnace and boiler. This speed is obviously influenced largely by the draft, which in turn determines also the rate of combustion. The increase in the heating value of the cinders as the rate of combustion increases is shown in Fig. 15, in which the ordinates represent the heating value of the cinders expressed as percentages of the B.t.u. contained in the dry coal, and the abscissae represent the rates of combustion. In test 2081 with the lowest rate of combustion and the smallest cinder loss, the calorific value of the cinders was only 44.9 per cent of the calorific value of the dry coal. In test 2089 with the highest rate of combustion and next to the greatest cinder discharge, the calorific value of the cinders was 92 per cent of that of the dry coal, the cinders in this case having passed through the boiler practically unburnt.

20. Heat Balances.—The heat balances for the tests of Series 2 are presented in Table 5, in which the various items of the balance are expressed in percentages of the heating value of the coal in the condition in which it was fired. The tests are arranged in the table in the order of the increasing amounts of equivalent evaporation per square foot of heating surface per hour.

FIG. 15. THE RELATION BETWEEN THE HEATING VALUE OF THE CINDERS AND RATE OF COMBUSTION.

	To Radiation and Not- accounted for	889	3.2	7.2	4.3	5.0	4.7	5.7	20.1	9.1	0.0	4.7	4.0	0.0	C.61	20	0.0	0.01	0.0T	1.21	1.11	6.1	10.8	10.4
	To Combustible in the Ash	890	3.2	3.3	1.4	3.5	2.8	0. 0. 0.	2.0	4.1	3.5	2.9	4.7	1.7	4.3		4.0	0.0	1.2	20.00	6.2	3.0	2.0	5.0
Fired	To Combustible in the Stack Cinders	888	1.5	2.4	3.9	2.6	1.7	5.3	4.9	5.6	5.7	5.2	9.4	10.4	11.7	007	12.3	12.U	20.4	16.3	18.3	19.4	23.5	22.3
the Coal as	To Combustible in the Front-end Cinders	887	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0	0.0	0.1	0.1	0.1	0.1	0.2	0.1	0.1
Percentages of the Heating Value of	To Incomplete Combustion	886	0.0	0.6	0.7	0.0	1.3	0.0	0.3	0.0	0.0	0.0	0.5	0.0	0.0		2.1	0.2	0.7	0.0	0.0	0.3	1.2	0.6
	To Escaping Gases	885	18.9	15.8	17.9	15.9	17.7	15.6	16.0	15.3	14.5	15.3	14.8	16.0	15.0		14.0	13.7	12.8	14.6	13.2	12.0	11.1	11.0
	To Hydrogen in the Coal	884	4.6	4.5	4.6	4.6	4.6	4.6	4.6	4.6	4.5	4.7	4.7	4.7	4.7	1	4.7	4.8	4.9	4.8	4.9	4.9	4.9	4.9
	To Moisture in the Air	883	0.3	0.2	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		0.2	0.2	0.2	0.3	0.2	0.2	0.1	0.1
	To Moisture in the Coal	882	1.3	1.4	1.5	1.4	1.5	1.5	1.5	1.6	1.6	1.5	1.6	1.6	1.0		1.3	1.8	1.9	1.6	1.4	1.8	1.5	1.7
	Absorbed by the Boiler	881	4.04	64.5	65.5	66.6	65.3	63.5	61.8	60.7	64.6	67.6	58.9	56.7	50.2		53.5	57.0	46.4	46.8	41.9	50.3	38.8	43.8
Equivalent	per sq. ft. of Heating Surface per Hour, lb.	648	5.26	5.27	6.08	6.35	6.37	7.70	8.05	8.06	8.22	8.72	10.27	10.49	11.62	12.36	12.70	12.72	14.27	14.29	14.93	16.55	16.75	17.65
	Test No.		2081	2086	2075	2087	2080	2085	2077	2083	2088	2095	2073	2078	2079	2072	2074	2092	2076	2084	2082	2094	2089	2093

TABLE 5. HEAT BALANCE FOR SERIES 2.

26

ILLINOIS ENGINEERING EXPERIMENT STATION

Test No.	Laboratory Designation	Duration of Test, Minutes	Revolu- tions, Average per Minute	Speed in Miles per Hour	Piston Speed in Feet per Minute	Position of Throttle	Average Boiler Pressure, per sq. in.	Drawbar Pull, Ib.	Average Cut-off, Per cent of Stroke	Average Least Back Pressure, 1b. per sq. in.	Average Mean Effective Pressure, 1b. per sq. in.	
	Code Item		352	353	354	363	380	487	499	615	678	
2081	55-24-F	150	50.6	9.2	252.5	Full	198.2		24.1	0.7	1.77	
2086	55-24-F	170	51.3	9.8	256.1	Full	199.1	15 532	23.4	0.6	1.77	
2075	55-32-F	140	50.6	9.2	252.3	Full	198.1	20 483	32.1	1.7	98.9	
2097	55-32-F	110	52.1	9.5	260.0	Full	198.8	20 820	32.3	2.1	101.5	
2085	55-40-F	120	51.1	9.8	255.1	Full	197.9	24 833	41.3	1.8	117.8	
2096	55-40-F	06	51.5	9.4	257.0	Full	196.1	24 980	40.4	1.7	120.2	
2095	55-48-F	60	51.3	9.3	255.9	Full	198.1	28 922	49.2	1.8	135.4	
2098	55-48-F	50	51.7	9.4	258.2	Full	198.2	29 240	49.1	2.0	137.5	
2080	110-16-F	130	110.4	20.0	550.7	Full	198.8		16.9	2.0	43.9	
2087	110-16-F	150	111.1	20.2	554.4	Full	199.2	8 135	16.6	2.3	43.7	
2077	110-24-F	110	110.7	20.1	552.2	Full	196.0	12 512	24.0	3.2	62.4	
2073	110-32-F	80	109.4	19.9	545.9	Full	197.6	16 961	29.6	6.5	80.8	
2072	110-40-F	60	109.6	19.9	546.8	Full	196.7	20 877	41.5	9.3	97.6	
2084	110-48-F	50	110.4	20.0	550.8	Full	194.0	22 403	48.4	12.2	105.7	
2094	110-56-F	25	110.9	20.1	553.3	Full	196.3	25 225	57.0	16.3	119.1	
0000	10 L 10 L	001	0.011	000	0 40 0	E-11	100 1	010	10.1	0.0	010	
2003	1-01-COT	OOT	0.01T	90.A	0.940	Ing	1.0AL		#-0T	20.5	10.01	
20.02	1-92-00T	22	0.80T	80.1	040.0	IIn.a	TA0.4	DOT OT	0.44.0	# L C T	0.00	
2074	165-32-F	60	169.6	30.8	846.3	Full	1.7.41	13 486	20.02	C.21	04.1	
2092	165-32-F	50	168.5	30.6	840.8	Full	198.4	13 701	30.4	11.6	65.3	
2082	165-40-F	50	169.7	30.8	846.7	Full	195.2	14 783	41.4	18.3	74.5	
2093	165-48-F	80	167.4	30.4	835.5	Full	191.5	17 660	48.6	22.1	84.2	
		1		1	0 00 11	:	0 20 7	200	-		1 00	
2028		001	2.34.2	42.0	0.2011	iin a	0.1AT	0000	A.CT	1.0	1.02	
61.02	220-24-F	000	231.9	42.1	2.7011	IID.H	5.18T	012 0	1000	0.0	0.14	
2076	220-32-F	35	229.9	41.7	1147.2	H'ull	196.0	968 OT	27.70	2.0T	0.10	
2089	220-40-F	35	230.7	41.9	1151.2	IID.A	184.8	1 122 11	43.0	22.0	1.00	

TABLE 6. Engine and General Performance—Series 2.

2.	
LE	
LAB	

ENGINE AND GENERAL PERFORMANCE-SERIES 2.

Efficiency of Locomotive, per cent.	817	3.80 4.33	4.07	4.44	3.69	4.13	3.83 3.13	3.27	3.56	3.75	2.43 2.73 2.82	3.98 3.23 3.02 2.46
Machine Efficiency Locomotive, per cent.	778	84.7 86.7 86.7	88.5	89.2 89.1 89.1	78.1	84.2	89.8 88.0	89.0	79.9	87.6	83.4 83.4	83.5 84.7 84.7
Machine Friction of Locomotive in Terms of Forse Power	770	70.0 77.2	19.8	80.9 80.0 80.0	122.7	125.5	126.0	167.3	146.8	157.0	242.7 242.7 201.9	124.8 181.4 207.2 238.3
Dry Steam Consumed per Drawbar Horse Power per Hour, lb.	745	36.83 32.76	33.55	32.56 32.56	39.24	32.48	30.28 39.30	33.02	37.10	31.03	31.01 33.45 33.80	35.21 33.84 33.86 34.42
Dry Coal Consumed per Drawbar Horse Power per Hour, lb.	744	5.33 4.62	4.96	4.66	5.63	4.87	5.33 6.69	6.27	5.65	5.40	7.38	5.29 6.18 8.38 8.38
Drawbar Horse Power	743	386.0 501.4	614.5	732.2	437.6	670.2 898.3	1107.8	1354.1	583.6 833.8	1107.3	1214.6 1214.6 1431.6	631.3 928.5 1157.1 1321.6
Dry Steam Consumed per Horse Power per Hour, lb.	736	31.53 31.18 28.40	29.69	29.37	30.87 30.65	27.36	27.19 28.60	29.39	29.65	27.17	27.34 27.88 20.69	29.40 28.30 29.18
Dry Coal Consumed per Horse Power per Hour, lb.	734	4.86 4.51 4.00	4.39	4.15	4.31	4.10	4.79	5.58	4.52	4.73	4.46 6.15 6.31	4.42 5.17 5.71 7.10
Indicated Horse Power, Total	711	450.5 456.0 578.6	694.3	804.9 804.9 822.2	558.5 560.3	795.7 1019.3	1233.8	1521.4	730.4	1264.3	1267.3 1457.3 1633.5	756.1 1109.9 1364.3 1559.9
Laboratory Designation	Code Item	55-24-F 55-24-F 55-32-F	55-40-F	55-48-F	110-16-F 110-16-F	110-24-F 110-32-F	110-40-F	110-56-F	165-16-F	165-32-F	165-32-F	220-16-F 220-24-F 220-32-F 220-40-F
Test No.,		2081 2086 2075	2085	2095 2095 2098	2080 2087	2073	2072	2094	2083	2074	2082	2088 2079 2076 2089

ILLINOIS ENGINEERING EXPERIMENT STATION

SPEED-MILES PER HOUR

FIG. 16. THE RELATION BETWEEN STEAM CONSUMPTION AND SPEED, AT VARIOUS CUT-OFFS.

DRY STEAM PER INDICATED HORSE POWER PER HOUR-POUNDS

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

B. ENGINE PERFORMANCE.

Tables 6 and 7 present information relating to the general conditions and the more important results concerning engine and general performance for all tests of Series 2. These data are arranged in groups with reference to the speed of the locomotive and, within each group, are arranged with reference to the indicated horse power developed, the first test in each group giving the lowest horse power developed at the group speed. Appendix 4 contains data and results for all tests including information concerning cylinder performance as shown by average values taken from indicator diagrams. Fig. 56 and 57, there included, show representative indicator diagrams.

The nominal speeds at which the locomotive was operated were 10, 20, 30, and 40 miles per hour, and the data indicate that the actual speeds obtained closely approximated these figures. The nominal cutoffs at which the locomotive was operated were 16, 24, 32, 40, 48, and 56 per cent of the stroke. The actual cut-offs, as determined from the indicator cards, do not vary greatly from the nominal cut-offs. All tests at a given nominal cut-off were made with the reverse lever in the same notch of the reverse-lever quadrant. In the discussion which follows relative to engine and general performance, speed and cut-off are referred to in terms of the nominal values. All points plotted upon the figures are, however, located with regard to the actual speed and cut-off as determined from test data.

The data in general indicate uniform conditions in those particulars in which uniformity was sought. Test conditions as to nominal speed and nominal cut-off were duplicated in six cases. Such duplicated tests show, in general, satisfactory agreement as regards both test conditions and derived results.

21. Dry Steam per Indicated Horse Power Hour and per Drawbar Horse Power Hour.—Fig. 16 and 17 present the relation between dry steam per indicated horse power hour and speed. In Fig. 16 this relation has been shown with a separate water-rate scale for each group of tests at a given cut-off. In Fig. 17 the same curves have been referred to a single water-rate scale in order that the curves may be compared more readily. No curve is drawn for 56 per cent cut-off, since only one test was made at that cut-off.

The minimum water-rate was 27.17 pounds of dry steam, and occurred in test 2074 at a speed of 30 miles per hour and 32 per cent cut-off. The maximum water rate was 31.53 pounds of dry steam, and occurred in test 2081 at a speed of 10 miles per hour and 24 per cent cut-off. The difference between the minimum and maximum water-

SPEED-MILES PER HOUR

FIG. 18. THE RELATION BETWEEN STEAM CONSUMPTION AND CUT-OFF, AT VARIOUS SPEEDS.

rates for all tests was only 4.36 pounds of dry steam. The corresponding differences between minimum and maximum rates at a given cutoff are in general much smaller.

A decrease in steam consumption per indicated horse power per hour as speed increases is shown until the speed has become from 20 to 30 miles per hour. Further increase of speed is then accompanied by increased steam consumption, as shown by all curves with the exception of that for tests at 16 per cent cut-off. The tests at both short and long cut-off show comparatively high water-rates. The best performance is shown by the curve for tests at 32 per cent cut-off. The tests at 40 per cent cut-off show rather better performance for freight service conditions than those made at 24 per cent cut-off.

Fig. 18 presents curves showing the dry steam consumed per indicated horse power per hour in its relation to cut-off. A curve is shown for each of the four nominal speeds at which tests were made—10, 20, 30, and 40 miles per hour. The tests made at 10 and at 40 miles per hour show much higher water-rates than do the tests made at 20 and 30 miles per hour. This is particularly true for cut-offs between 20 and 50 per cent. At short cut-off the 40 miles per hour curve shows a lower water-rate than the 20 and 30 miles per hour curves. At long cut-off the 10 miles per hour curve appears likewise to show a lower water-rate than the 20 and 30 miles per hour curves.

Except during short periods at starting and on heavy grades, the speed of this locomotive in service would probably vary between about 15 and 35 miles per hour, and the cut-off would range from say 50 to 20 per cent. Under these conditions of speed and cut-off the steam consumption varies between approximately 27 and 29 pounds of steam per indicated horse power per hour. It is probable that this range fairly represents the general average water rate for a very considerable number of freight locomotives in service.

22. Indicated Horse Power and Drawbar Horse Power.—Fig. 19 presents indicated horse power in its relation to speed, each curve of the figure representing all of the tests made at a particular nominal cut-off. In addition to the relationship just mentioned this figure shows clearly the range of the tests as to speed, cut-off, and load. It further shows the range covered within each group of tests when the tests are grouped either according to constant speed or to constant cut-off. The six different conditions of speed and cut-off at which duplicate tests were made are evident, and the proximity of the two points representing each pair of such tests indicates the uniformity obtained as to speed and indicated horse power developed.

SPEED-MILES PER HOUR

SPEED-MILES PER HOUR

FIG. 20. THE RELATION BETWEEN DRAWBAR HORSE POWER AND SPEED, AT VARIOUS CUT-OFFS.

The maximum indicated horse power was developed in test 2093 at a speed of 30 miles per hour and at 48 per cent cut-off. The average rate of working for this test was 1633.5 indicated horse power. The lowest rate of working was for test 2081, being 450.5 indicated horse power while running at 10 miles per hour with 24 per cent cut-off. The dry steam supplied to the engines per hour when developing 1633.5 indicated horse power was 48 387 pounds. The moist steam delivered to the engines for the same test was 48 812 pounds per hour.

The relations between the horse power developed at the locomotive drawbar and the speed are shown in Fig. 20, in which each of the curves presents this relation for a particular cut-off. The maximum rate of 1431.6 drawbar horse power and the minimum rate of 386.0 drawbar horse power were developed during tests 2093 and 2086 respectively, the former test being at 30 miles per hour and 48 per cent cut-off, and the latter at 10 miles per hour and 24 per cent cut-off. Owing to incomplete dynamometer records for tests 2081 no record is available for the drawbar horse power developed for this test. Tests 2081 and 2086 were made under similar conditions of speed and cut-off.

The plotted points and curves of Fig. 19 and 20 show the engines to have been tested throughout a range of speed, cut-off, and load which would cover all ordinary service conditions above a speed of 10 miles per hour.

23. Machine Friction.—The diagrams in Fig. 21 present information concerning machine friction and its relation to indicated horse power for speeds of 10, 20, 30, and 40 miles per hour. Upon each diagram is shown the relation between the indicated horse power developed and machine friction expressed in horse power and also the relation between the indicated horse power developed and machine friction expressed in per cent of indicated horse power. Obviously the ordinates of each pair of curves in this figure bear to each other a definite numerical relation, and the curves have been so drawn that they satisfy this relation and also fairly represent the plotted values for the individual tests.

The range in machine friction is, for the entire series, from 70 to 242.7 horse power. These values were obtained in tests 2086 and 2082 during which 456.0 and 1457.3 indicated horse power respectively were developed. Test 2086 was at 10 miles per hour and 24 per cent cut-off, and test 2082 was at 30 miles per hour and 40 per cent cut-off. Expressed as percent of the indicated horse power developed, the minimum machine friction was 10.2 per cent and occurred in test 2072;

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

ARCHINE FRICTION-HORSE POWER AND PERCENTER OF INDICATED HORSE

INDICATED HORSE POWER

INDICATED HORSE POWER

FIG. 23. THE RELATION BETWEEN MACHINE FRICTION POWER AND INDICATED HORSE POWER; AT VARIOUS SPEEDS.

the maximum was 21.9 per cent and occurred in test 2087. The former test was at 20 miles per hour and 40 per cent cut-off, developing 1233.8 indicated horse power, and the latter test at 20 miles per hour and 16 per cent cut-off, developing 560.3 indicated horse power.

While the curves differ more or less for different speeds, they all show the machine friction horse power to increase with increasing indicated horse power. In general, the ratio of machine friction horse power to indicated horse power decreases with increasing load. The rate of decrease of this ratio appears to be quite rapid for loads under 1000 horse power, but at greater loads the ratio becomes fairly constant for a given speed and ranges from 10 per cent to 15 per cent for the different speeds.

Fig. 22 presents upon a single diagram the four curves showing the relation between the machine friction in percentage of indicated horse power and the indicated horse power, which are included in Fig. 21. The curves so grouped indicate that as the speed increased, the percentage of power which was absorbed by machine friction also increased.

Fig. 23 likewise presents upon a single diagram the four curves showing the relation between machine friction and indicated horse power, the machine friction being expressed in terms of horse power. A general increase in machine friction both with increase of speed and with increase of indicated horse power is shown. The curves of Fig. 23, taken as a whole, show a tendency for the machine friction horse power to be fairly constant at a given speed or to increase rather slowly as the load increases up to about 1000 horse power. With loads greater than 1000 to 1200 horse power, the increase in machine friction is more rapid.

Fig. 24, 25, and 26 again present machine friction in its relation to indicated horse power. In these figures however each curve represents the data for all tests at a given nominal cut-off, instead of at a given speed as in the three preceding diagrams. The curves have been located and are presented in a manner similar to that used in connection with Fig. 21, 22, and 23.

These curves indicate that for a given cut-off machine friction horse power increased with the load, and at a rate approximately proportional to the increase of the load. The curves further indicate that, within the range of the tests, machine friction horse power increased with decreasing cut-off when the load remained constant. The per cent of indicated horse power absorbed in machine friction increased rap-

MACHINE FRICTION-HORSE POWER AND PERCENTAGE OF INDICATED HORSE POWER

THE RELATION BETWEEN MACHINE FRICTION AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS. INDICATED HORSE POWER

FIG. 24.

ILLINOIS ENGINEERING EXPERIMENT STATION

INDICATED HORSE POWER

FIG. 25. THE RELATION BETWEEN MACHINE FRICTION AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS.

INDICATED HORSE POWER

FIG. 26. THE RELATION BETWEEN MACHINE FRICTION POWER AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS.

idly with decreasing cut-off at constant load, and increased but slightly with increasing load at constant cut-off.

The locomotive tested carried 100.45 tons upon the drivers. The following table presents machine friction in terms of tractive force in pounds per ton upon drivers. The values given in the table were calculated from the curves of Fig. 23, making use of the minimum, maximum, and average values for machine friction horse power as shown by the various curves. In making these calculations nominal speed was employed.

LABLE O.	T	ABLE	8.	
----------	---	------	----	--

Speed in Miles per Hour	Machine Fric Force in Po upon Drivers	tion Expressed unds per Ton	as Tractive of Weight
The second second	Minimum	Average	Maximum
·10	25	31	34
20	23	25	31
30	19	20	26
40	12	17	22
Averages	20	23	28

MACHINE FRICTION.-SERIES 2.

For the locomotive tested the values given in Table 8 show 20 to 23 pounds tractive force per ton of weight on drivers to be values fairly representative of machine friction for practically all speeds when the load does not exceed 1000 to 1200 indicated horse power. For conditions of low speed, however, and for all speeds where the indicated horse power is comparatively high and the maximum tractive effort is approached, the machine friction is materially greater, as shown by the values given in the table for the speed of 10 miles per hour, and by the maximum values, which vary from 22 to 34 lb. per ton of weight upon the drivers.

Fig. 27 and 28 present machine friction in its relation to speed in miles per hour. A curve is drawn for each nominal cut-off. The values presented are the same as have been shown in preceding curves concerning machine friction, and some of the relations already considered in connection with Fig. 21 to 26 may be seen in Fig. 27 and 28. While the curves of Fig. 27 and 28 exhibit considerable lack of uniformity, the former figure shows machine friction horse power to increase more or less uniformly with increasing speed for all cut-offs; and Fig. 28 indicates that at constant speed the ratio of machine friction horse power to indicated horse power decreases as the cut-off increases, and that for any given cut-off this ratio is fairly constant throughout the range of speed shown.

SPEED-MILES PER HOUR

SPEED-MILES PER HOUR

FIG. 28. THE RELATION BETWEEN MACHINE FRICTION AND SPEED, AT VARIOUS CUT-OFFS.

MACHINE FRICTION-HORSE POWER

The facts here presented seem to warrant the conclusions that, for this locomotive, the percentage of indicated horse power absorbed by the friction of the machinery varies rather definitely with respect to speed, to cut-off, and to load; and that this machine friction entails a loss in tractive force between the cylinders and the locomotive drawbar which varies from about 15 to about 30 pounds for each ton of weight carried on the driving wheels.

C. GENERAL PERFORMANCE.

24. Coal Consumption per Indicated Horse Power Hour and per Drawbar Horse Power Hour.—The curves of Fig. 29 show the relation between speed and the amount of dry coal consumed per indicated horse power per hour. Each of the curves there drawn applies to a particular cut-off. In a similar manner the relation between speed and the dry coal consumed per drawbar horse power per hour is presented in Fig. 30.

The most economical performance was obtained in test 2075, made at a speed of 10 miles per hour and at 32 per cent cut-off. During this test 4.00 pounds and 4.62 pounds of dry coal per indicated horse power hour and per drawbar horse power hour respectively were used. The highest coal rate occurred in test 2089, made at a speed of 40 miles per hour and at 40 per cent cut-off, during which 7.10 pounds and 8.38 pounds of dry coal per indicated horse power hour and per drawbar horse power hour respectively were used. Both figures show a more rapid increase in coal consumption with increase of speed at long cut-off than with increase of speed at short cut-off. This is in conformity with the results presented in Fig. 19 where the relation between indicated horse power and speed is shown. The curves of Fig. 29 and 30 show that the economy was fairly constant, or increased slowly as speed was increased from 10 to 20 miles per hour. Tests at 24 per cent cut-off show an economy apparently better at 15 to 20 miles per hour than at 10 miles per hour. As speed increased above 20 miles per hour the coal consumption increased more rapidly than at lower speeds, with the exception of the tests made at 16 per cent cut-off.

25. General Efficiency.—By general efficiency is meant, in this connection, the ratio of the heat equivalent of the work done at the locomotive drawbar to the heat content of the coal. This ratio is a measure of the economic performance of the locomotive as a whole. General efficiency and its relation to speed are shown in Fig. 31, in which a separate curve is presented for each nominal cut-off.

SPEED-MILES PER HOUR

FIG. 30. THE RELATION BETWEEN COAL CONSUMED PER DRAWBAR HORSE POWER HOUR AND SPEED, AT VARIOUS CUT-OFFS.

The maximum efficiency obtained was 4.44 per cent, and occurred in test 2095 which was made at a speed of 10 miles per hour with 48 per cent cut-off, while developing 804.9 indicated horse power. The minimum efficiency obtained was 2.46 per cent, and occurred in test 2089 made at a speed of 40 miles per hour with 40 per cent cut-off, while developing 1559.9 indicated horse power. This group of curves shows substantially the same relations as were shown by Fig. 29 and 30 which presented coal consumption per indicated horse power hour and drawbar horse power hour. Collectively the curves indicate a fairly constant efficiency of about 4 per cent, for speeds from 10 to 20 miles per hour. As the speed increases above 20 miles per hour the efficiency decreases from about 4 per cent to about 3 per cent.

SPEED-MILES PER HOUR

FIG. 31. THE RELATION BETWEEN GENERAL EFFICIENCY AND SPEED, AT VARIOUS CUT-OFFS.

VII. THE RESULTS OF THE TESTS OF SERIES I.

Series 1 comprises tests 2009 to 2037 inclusive. The conditions which prevailed during the tests of this series have been set forth in sections IV and V, and the differences in the condition of the locomotive during Series 1 as compared with Series 2 are stated in section II and in Appendix 1. It is sufficient here to recall the fact that during Series 1 the locomotive was in the condition in which it was deliv-

cred to the laboratory. The repairs made between Series 1 and 2 did not prove to have affected radically the performance of the locomotive, and most of the relations presented in the preceding section relating to Series 2 remain substantially the same for Series 1. For these reasons it has seemed unnecessary to present the results for Series 1 in very great detail. All the results are given in Appendix 4; but only the more important measures of performance are here included and discussed.

D. BOILER PERFORMANCE.

26. The Range of Performance.—The more significant data and results pertaining to the performance of the boiler during Series 1 are given in Table 9, in which the tests are arranged in the order of the increasing amounts of dry coal fired per hour. In order to exhibit the range of the boiler performance, the minimum and maximum values of the main data and results are assembled in the table immediately following. As in all the tables, the quantities cited are the average values prevailing during the tests.

	Minimum	Maximum
Duration of test, minutes	40	180
Boiler pressure, lb. per sq. in	189.9	198.1
Feed water temperature, deg. F	. 57.7	72.2
Quality of the steam in the dome	0.983	3 0.9956
Calorific value of coal as fired, B.t.u	9929	11 376
Calorific value of dry coal, B.t.u	11 835	12 757
Ash content of coal as fired—per cent	10.68	14.27
Draft in front of diaphragm, inches of water	2.2	10.7
Firebox temperature, deg. F	1552	2081
Front-end temperature, deg. F	494	761
Dry coal fired per test, lb	3568	10031
Dry coal fired per hour, lb	1814	7767
Dry coal fired per hour per square foot of		
grate, 1b	. 36.6	156.8
Equivalent evaporation per hour, lb	16 934	46 380
Equivalent evaporation per hour per square		
foot of heating surface, lb	5.16	14.13
Total cinder loss, per hour, lb	66	1509
Total cinder loss, per cent of dry coal	3.4	20.8

27. Economic Performance.—In Series 1 the equivalent evaporation per pound of dry coal ranged from a minimum of 5.97 pounds to a maximum of 10.07 pounds. This latter value, applying to test 2024,

	5
	5
	- 2
-	
0,	
5.3	
14	2
M	7
7	- 7
-	1
F	2
	H

BOILER PERFORMANCE-SERIES 1.

Efficiency	Including the Grate, per cent	666	76.87	69.88	60.56	67.75	64.21	67.33	66.49	63.80	64.68	61.68	59.22	58.54	60.80	57.63	59.71	58.85	63.43	57.78	52.84	59.76	54.79	55.94	49.92	54.54	49.86	48.95	and
alent tion, lb.	Per lb. of Dry Coal	658	10.07	8.96	7.66	8.59	8.37	8.53	8.41	8.19	8.35	7.62	7.74	7.17	7.69	7.45	7.85	7.57	7.84	7.29	6.69	7.54	6.91	7.11	6.27	7.00	6.33	5.97	
Evapora	Per Hour per sq. ft. of Heating Surface	648	5.56	5.33	5.16	6.00	6.14	6.42	6.50	6.60	8.17	7.56	7.68	8.02	8.69	8.71	9.60	9.78	10.14	10.54	10.04	11.77	11.26	12.06	11.83	13.97	12.89	14.13	
Calorific Value ner	Ib. of Dry Coal, B. t. u.	458	12 712	12 422	12 274	12 309	12 653	12 302	12 265	12 553	12 523	11 992	12 688	11 875	12 280	12 433	12 757	12 486	11 989	12 242	12 307	12 243	12 242	12 329	12 184	19.441	119.311	11 835	
rs, lb.	Total in Per cent of the Dry Coal Fired	426	3.7	3.4	6.0	6.1	6.9	6.1	6.1	6.6	8.6	9.1	9.4	12.3	9.7	11.4	13.0	13.9	15.0	13.1	14.9	18.0	18.8	14.5	14.6	18.6	20.8	19.4	
Cinde	Total per Hour	424 & 345	68	99	133	140	166	151	153	176	277	297	306	453	359	438	519	589	638	623	736	924	1003	803	901	7121	1388	1509	
Quality of the	Steam in the Dome	407	.9950	.9910	.9945	.9895	.9912	.9929	.9930	0066	.9910	.9890	.9914	.9956	.9890	.9870	.9894	.9902	9686.	.9850	.9870	.9867	.9862	.9833	.9840	9860	0800	9857	
Duration	of Test, Minutes		120	180	120	130	140	120	160	150	130	140	150	120	110	02	100	90	06	06	06	80	40	70	10	60	00	909	;
al Fired our, 1b.	Per sq. ft. of Grate	627	36.6	39.5	44.6	46.3	48.6	49.9	51.2	53.4	64.9	65.7	65.7	74.1	74.8	77.4	81.0	85.6	85.6	95.8	666	103.5	108.0	112.3	125.1	129.2	125.0	156.8	2.2
Dry Co per He	Total	626	1814	1957	2211	2293	2406	2472	2537	2647	3215	3255	3256	3673	3707	3834	4013	4242	4244	4749	4927	5126	5352	5565	6199	REFA	6607	7767	
Average Doilor	Pressure, lb. per sq. in.	380	196.3	193.4	193.7	196.9	198.1	190.7	194.2	190.5	193.8	193.9	196.8	189.9	191.8	192.0	196.5	1.701	196.4	1.001	192.1	196.0	196.8	194.3	191.5	1061	1000	1001	
	Laboratory Designation	Code Item 127	55-24-F	83-16-F	83-16-F	110-16-F	55-32-F	83-24-F	83-24-F	138-16-F	83-32-F	193-16-F	110-24-F	83-32-F	138-24-F	193-20-F	165-24-F	110-32-F	83-40-F	138-32-F	193-24-F	110-48-F	165-32-F	110-40-F	193-32-F	165-10-F	100 40 E	103-40-F	
	Test No.		2024	2017	2021	2026	2028	2020	2018	2009	2019	2016	2027	2022	2012	2010	2030	2029	2031	2013	2015	2033	2032	2035	2014	1006	0000	2020	

46

ILLINOIS ENGINEERING EXPERIMENT STATION

is however so divergent from the other values for similar rates of combustion as to raise doubt of its validity, although errors can not be found in the data. The next highest evaporation per pound of dry coal is 8.96 pounds. The rate of decrease in the evaporation per pound of coal with respect to increase in rate of combustion is shown in Fig. 32. The rate of this decrease with respect to increase in rate of evaporation is shown in Fig. 33. These two figures are comparable with Fig. 8 and 9 of Series 2.

28. Boiler Efficiency.—As previously explained, efficiency in this connection means the ratio of the heat absorbed by the steam generated, to the heat contained in the coal as it was fired. If, for the reason above suggested, we exclude test 2024, the highest efficiency obtained during Series 1 was 69.88 per cent, which occurred during test 2017 with a rate of combustion of 39.5 pounds of dry coal per square foot of grate per hour. The lowest efficiency, 48.95 per cent, prevailed during test 2034 in which the rate of combustion was 156.8 pounds of dry coal per square foot of grate per square foot of grate per hour. The relation between efficiency and rate of combustion is shown in Fig. 34.

DEY COAL FIRED PER SQUARE FOOT OF GRATE PER HOUR-POUNDS

FIG. 32. THE RELATION BETWEEN EVAPORATION PER POUND OF COAL AND RATE OF COMBUSTION.

EQUIVALENT EVAPORATION PER SQUARE FOOT OF HEATING SURFACE PER HOUR—POUNDS

FIG. 34. THE RELATION BETWEEN BOILER EFFICIENCY AND RATE OF COMBUSTION.

E. ENGINE PERFORMANCE AND GENERAL PERFORMANCE.

The more important data and results pertaining to the performance of the engines and to the general performance of the locomotive during Series 1 are assembled in Table 10. The remaining data and results appear in Appendix 4. In the table all tests run at like speed are grouped and, within these groups, the tests are arranged in the order of the values of cut-off. The tests of Series 1 were made at speeds varying from 10 to 35 miles per hour, and at cut-offs of 16, 20, 24, 32, 40, and 48 per cent. Only one test however was made at 20 per cent cut-off and one at 48 per cent cut-off, and these are omitted from the figures here included.

29. Dry Steam per Indicated Horse Power Hour.—In Fig. 35 is shown the relation between steam consumption and speed for each of the four cut-offs. The curves here drawn show the minimum steam consumption to have occurred in each case at a speed of from 20 to 25

FIG. 35. THE RELATION BETWEEN STEAM CONSUMPTION AND SPEED, AT VARIOUS CUT-OFFS.

-
<u> </u>
-
61
3
E H
A
r.i

ENGINE AND GENERAL PERFORMANCE-SERIES 1.

				the second secon							
Test No.	Laboratory Designation	Duration of Test,	Speed in Miles	Piston Speed in Feet	Average Cut-off, Per cent	Average Least Back Pressure,	Indicated Horse Power,	Dry Steam Consumed per I.H.P.	Drawbar Horse	Machine Efficiency of	Efficiency of Locomotive.
		Minutes	Hour	Minute	of Stroke	lb. per sq. in.	Total	per rour,	LOWER	per cent	per cent
	Code Item &		353	354	499	919	117	736	743	778	627
2025	55-16-F	120	9.4	257.0			301.6	47.16	231.7	76.8	8.11
420Z	1-7-7-CC	120	6.7	253.0			431.0	34.74	855.6	82.5	3.97
0707	J-20-00	140	9.1	251.0	31.7		548.7	30.57	488.1	89.0	4.10
2017	83-16-F	180	14.5	399.2	16.9	2.6	428.1	34.08	357.1	88.4	2 76
2021	83-16-F	120	14.5	399.7	14.9	4.4	428.6	82.10	346.3	80.8	3.31
2020	83-24-F	120	14.6	401.7	22.4	5.1	584.4	29.99	508.9	87.1	4.27
2018	83-24-F	160	14.5	399.2	22.6	4.0	593.8	29.71	511.7	86.2	4.21
6102	83-82-F	130	14.6	402.0	30.6	5.2	765.7	28.96	683.1	89.2	4.35
2202	83-32-F	120	14.6	402.2	30.3	7.2	773.9	28.14	674.6	87.2	3.94
1202	83-40-F	90	15.6	428.1	39.5	10.3	953.9	28.75	869.7	91.2	4.38
2026	110-16-F	130	19.9	545.9	19.1	3.1	515.0	31.67	415.1	80.6	3.75
2027	110-24-F	150	20.0	548.9	24.3	6.1	749.1	27.84	633.6	84.6	3.91
2029	110-32-F	06	19.9	547.9	30.7	10.5	968.6	27.51	820.8	84.7	3.94
2030	110-40-F	01	20.3	557.9	39.9	14.7	1119.1	29.43	942.9	84.3	3.49
2033	110-48-F	80	20.0	548.4	40.7	15.2	1142.3	27.83	1007.9	88.2	4.12
2009	138-16-F	150	25.2	694.6	17.1	5.3	545.5	33.06			
2012	138-24-F	110	25.3	696.3	23.3	7.7	802.8	29.44	684.9	85.3	3.84
2013	138-32-F	90	25.4	697.2	30.8	11.6	986.3	29.14	863.7	87.6	3.78
2023	138-40-F	90	25.2	693.6	39.4	19.5	1188.7	29.10	1070.5	90.1	3.36
2030	165-24-F	100	30.8	845.3	23.4	11.5	899.6	28 99	72.5 A	80.7	8 69
2032	165-82-F	40	30.5	838.8	30.2		1094.6	27.84	922.8	843	198
2037	165-40-F	60	30.7	844.8	40.1	18.1	1277.7	29.56	1045.3	81.8	3.29
2016	193-16-F	140	36.3	998.0	16.4	6.4	583.8	35.18	418.2	71.6	2.74
0102	193-20-F	11	35.7	981.8	19.2	8.2	737.0	32.07			
2015	193-24-F	06	36.3	998.0	22.7	12.1	845.6	32.32	626.2	74.1	2.63
2014	193-32-F	02	36.3	996.4	31.4	17.1	1079.0	29.82	853.1	1.9.1	2.88
\$007	J-O-B-ORT	00	30.0	1 C.UER	41.4	24.1	1276.7	30.02	961.7	75.3	2.67

ILLINOIS ENGINEERING EXPERIMENT STATION

miles per hour. The best performance was obtained during the tests made at 32 per cent cut-off. The minimum steam consumption was 27.51 pounds of dry steam per indicated horse power per hour, and the maximum 35.18 pounds. The difference between these quantities, 7.67 pounds, represents a comparatively small variation in water rate, considering the variety and range of the test conditions. Fig. 35 is comparable with Fig. 17, and a comparison of these figures shows the steam consumption during Series 1 to have been considerably greater than in Series 2, at all cut-offs.

30. Indicated Horse Power.—The relation of indicated horse power to speed is shown in Fig. 36, in which each of the curves represents all the tests made at a particular cut-off. This figure shows also the range of the test conditions for Series 1. The maximum load, 1278 indicated horse power, was developed during test 2037 when the speed was 30 miles per hour and the cut-off 40 per cent. The minimum average load, 428 indicated horse power, occurred in test 2017 at a speed of 15 miles per hour and 16 per cent cut-off. The work performed at the locomotive drawbar varied from 346 to 1071 horse power.

SPEED-MILES PER HOUR

FIG. 36. THE RELATION BETWEEN INDICATED HORSE POWER AND SPEED, AT VARIOUS CUT-OFFS.

31. Machine Friction.—Machine friction horse power during Series 1 and its relation to speed are shown in Fig. 37. This figure indicates also the influence of cut-off on machine friction, and is comparable with Fig. 27 which presents the same relations for Series 2.

An analysis of machine friction similar to that developed in section VI for Series 2 has been made for Series 1, although the figures are not here included. This analysis shows that during Series 1 the machine friction was somewhat greater than during Series 2—a result which was expected, in view of the work done upon the machinery between these two groups of tests. This analysis indicates also that for constant cut-off the machine friction increased more rapidly with increasing load during Series 1 than during Series 2. With these two exceptions, the relations shown in the discussion of machine friction for Series 2, and the conclusions there drawn, remain substantially the same for Series 1.

32. Coal Consumption per Indicated Horse Power.—The dry coal consumed per indicated horse power per hour, and the relation of this coal consumption to speed are shown in the curves of Fig. 38. The curves show this coal rate to vary in general between 4 and 6 pounds per hour for the range of conditions which prevailed in Series 1. Again excluding test 2024, the lowest coal rate, 4.18 pounds per hour, was obtained during test 2019 at 15 miles per hour and 32 per cent cut-off. The highest coal rate, 6.07 pounds per hour, was obtained during test 2034, at 35 miles per hour and 40 per cent cut-off. Test 2034 is the one during which the lowest boiler efficiency prevailed.

33. General Efficiency.—The general efficiency of the locomotive and the relation of this efficiency to speed are shown in Fig. 39, which is comparable with Fig. 31 of Series 2. The greatest efficiency was 4.38 per cent, and the lowest 2.63 per cent. This is practically the same range in efficiency as is represented in Fig. 31.

VIII. COMPARISON OF THE RESULTS OF SERIES 1 AND 2.

A few of the differences in the performance of the locomotive during the tests of Series 1 and Series 2 have already been referred to incidentally in the preceding discussion. It is the purpose to discuss in this section the effects on the general performance of the boiler and engines caused by the repairs and changes which were made between these two groups of tests. While these changes are elsewhere enumer-

SPEED-MILES PER HOUR

SPEED-MILES PER HOUR

FIG. 38. THE RELATION BETWEEN COAL CONSUMED PER INDICATED HORSE POWER PER HOUR AND SPEED, AT VARIOUS CUT-OFFS.

MACHINE FRICTION-HORSE POWER

FIG. 39. THE RELATION BETWEEN GENERAL EFFICIENCY AND SPEED, AT VARIOUS CUT-OFFS.

ated, it will be convenient to have restated at this point those which might have affected the general performance. They were:

- 1. The nozzle tip, $5\frac{1}{4}$ in. in diameter, used during Series 1 was replaced by a $5\frac{7}{8}$ -in. tip.
- 2. A small leak in one of the branch-pipe joints was stopped.
- 3. The cylinders and valve chambers were re-bored.
- 4. New pistons and new piston rings were applied.
- 5. New valve bull-rings and valve packing rings were applied.
- 6. Lost motion in the eccentric straps was taken up.
- 7. The valves were reset.
- 8. The piston rods were trued and the rod packing renewed on both sides.
- 9. The side-rod bushings were renewed.
- 10. Three new driving-wheel tires were applied.

34. Comparison of the Boiler Performance.—Perhaps the best basis for a comparison of the boiler performance during the two series is to be found in the curves of Fig. 8 and 32, which present the average values of the equivalent evaporation per pound of dry coal per hour for Series 2 and Series 1 respectively. These two curves, when plotted on the same diagram, almost coincide. The curve for Series 1 lies below that for Series 2 by an amount which at no rate of combus-

tion exceeds one-fifth of a pound of equivalent evaporation per pound of coal. At no point throughout the range of the rate of combustion is the performance of the boiler in Series 2 better than in Series 1 by more than 3 per cent. A comparison of boiler efficiency based on Fig. 10 and 34 shows an even closer agreement in the boiler performance of the two series. Of the various changes cited above only item 1, the change in nozzle tip, could have affected boiler performance, and the facts just stated seem to warrant the conclusion that this had no substantial effect upon the general performance of the boiler and furnace.

35. Comparison of the Cylinder Performance.—Any of the first seven items in the list of changes given might conceivably have affected the cylinder performance. The steam leak referred to in item 2, however, was proved at the time to have been inconsiderable in amount. The combined effect of these seven items should be disclosed by a comparison of the steam consumption per indicated horse power hour for all tests of both series which are comparable as regards speed and cut-off. The values of steam consumption for such tests are brought together in the following table. In four instances in this table a pair of tests from Series 2 is compared with a single test from Series 1, and in these cases the water rate presented for Series 2 is the average rate for the pair.

Speed,	Cut-off,	Test N	umbers	Steam Con lb. per ho	Difference in Steam Consumption, Percentage		
ш. р. п.	per cens	Series 1	Series 2	Series 1	Series 2	of Consump- tion for Series 2.	
10	24	2024	2081 2086 2075	34.74	31.35	10.8	
**	32	2028	2097	30.57	28.40	7.6	
			2080				
20	16	2026	2087	31.67	30.76	2.9	
	24	2027	2077	27.84	27.36	1.8	
,,	32	2029	2073	27.51	27.20	1,1	
,,	40	2035	2072	29.43	27.19	8.2	
"	48	2033	2084	27.83	28.69	-3.0	
30	24	2030	2078	28.99	28.09	3.2	
	32	2032	2092	27.84	27.25	2.2	
,,	40	2037	2082	29.56	27.88	6.0	
141 A.					Average .	4.1	

TABLE 11.

STEAM CONSUMPTION FOR COMPARABLE TESTS OF SERIES 1 AND 2.

Except for the two tests run at 20 miles per hour and 48 per cent cut-off, all the tests of Series 2 show a lower steam consumption than the corresponding tests of Series 1. The differences in steam consumption are shown in the last column of the table, where they are expressed in percentages of the water rate for Series 2. With the one exception cited, the improvement in water rate ranged from 1.1 to 10.8 per cent and the average improvement for all tests amounted to 4.1 per cent. Neither this average nor the range is very great, and these facts emphasize the statement previously made that all the repairs and changes were such as would have been regarded as unnecessary under ordinary conditions, and that they were resorted to only that nothing which would probably improve performance should be left undone.

In the data for tests 2090 and 2091 means are at hand for roughly differentiating the effect of the changes in nozzle tip from the effect of the other changes. It will be recalled that during these two tests the conditions were identical with those prevailing during the tests of Series 2, except that the $57/_8$ -in. nozzle tip used in Series 2 was replaced by the $51/_4$ -in. tip which had been used in Series 1. A comparison of the water rates for these two tests with the water rates for the comparable tests of Series 2 is exhibited below.

TABLE 1	2.
---------	----

COMPARISON OF WATER RATE WITH 57%-IN. NOZZLE TIP AND 51/4-IN. NOZZLE TIP.

Speed	Cut-off	Test 1	Numbers	Steam Co lb. per ho	nsumption, i. h. p. our	Difference in Steam Consumption,
m. p. h.	per cent	Tests with 5¼-in. Tip	Tests with 5 % -in. Tip, Series 2	Tests with 5¼-in. Tip	Tests with 5 % -in. Tip, Series 2	Percentage of Consump- tion for Series 2
20	24	2090	2077	28.99	27.36	6.0
30	32	2091	2092	29.10	27.25	6.8

It is apparent that in both tests 2090 and 2091, with the smaller nozzle tip, the water rate was higher than in the corresponding tests of Series 2 in which the larger tip was used. The average difference based on the tests of Series 2 is 6.4 per cent. In view of the range in the differences in water rate for all tests of the two series, which is exhibited in the first table in this section, it is doubtless unsafe to draw too sweeping a conclusion from a showing which rests on a comparison of two pairs of tests only. Since, however, the average difference in steam consumption for all tests of both series was only 4.1 per cent, and since such information as is available concerning the effect of the change in nozzle tip shows that it made an average change in steam consumption of 6.4 per cent; the inference is perhaps warranted, that practically all the improvement effected by the changes and repairs was accomplished by the increase in the size of the exhaust nozzle tip, through its influence on back pressure.

- Martine - Martine -

PART II.

APPENDIX I.

THE LOCOMOTIVE.

Illinois Central Railroad locomotive 958 is of the consolidation type. It was built by the Baldwin Locomotive Works in December, 1909, and in the classification of the Associated Lines is designated as $C = 63 = \frac{22}{30} = 39.2$. The locomotive uses saturated steam in simple cylinders twenty-two inches in diameter by thirty inches stroke, weighs 223 000 pounds, and has a rated tractive effort of 39 180 pounds. This tractive effort assumes a driving wheel diameter of 63 inches. The drivers however had been turned to 61 inches for which the rated tractive effort would be 40 470 pounds. The general design of the locomotive is shown in Fig. 40 and 42, and its appearance in service is shown in Fig. 1. The period of its service and its mileage have been stated in section II.

Repairs and Changes.—The repairs and changes which have been referred to in Part I were as follows.

After test No. 2037. The valves were reset; the valve and cylinder packing-rings were renewed; lost motion in the eccentric straps was taken up; the piston-rod packing was renewed; cylinder cocks were repaired or renewed; side-rod bushings were renewed; a new injector was applied; the boiler seams were caulked; three new tires were applied; and certain minor adjustments were made in order to take up lost motion.

After test No. 2045. The cylinders and the valve chambers were rebored; the pistons and piston packing-rings were renewed; the valve bull-rings and packing-rings were renewed; the piston rods were trued; a small leak in one of the branch pipe joints was stopped; and the $5^{1}/_{4}$ -in. nozzle tip previously in use was replaced by a $5^{7}/_{8}$ -in. tip. The $5^{1}/_{4}$ -in. tip was again used during tests 2090 and 2091.

The Boiler.—The boiler, which carried a working pressure of 200 pounds, was of the crown-bar type, with straight top and wide firebox. Its general design appears in Fig. 41, 43, and 44. The principal dimensions of the boiler are given in the following list.

Outside diameter of first ring (205)*	80 inches
Thickness of sheets:	
Cylindrical courses	3/4 "
Wrapper sheet	5/8 "
Flue sheets	1/2 "
Firebox sheets	3/8 "
Number of tubes (211)	413
Outside diameter of tubes (212)	2 inches
Thickness of tubes (213)	0.133 "
Length between tube sheets (214)	195.2 "
Length of firebox, inside (234)	108.25 "
Width of firebox, inside (235)	66.13 ''
Volume of firebox (238)	244 cu. ft.
Heating surface of the tubes, fire side (272)	3094 sq. ft.
Heating surface of front tube sheet (277)	21 ,, ,,
Heating surface of the firebox. fire side (273)	168 """
Total heating surface, fire side (275)	3283 ", ",
Water space in the boiler (282)	429 cu. ft.
Steam space in the boiler (283)	107 '' ''
Grates, of the interlocking finger type, area (252)	49.55 sq. ft.

The Cylinders and Valves.—The cylinders and valve chambers were of cast-iron with cast iron bushings. The pistons were of the box type, cast in one piece. The steam distribution was controlled by piston valves with inside admission. The nominal piston travel was 6 inches, and the actual travel 5-55/64 inches on the right side, and 5-27/32 on the left side. The valves were set with 1/32 inch lead in full gear and were actuated by an indirect shifting link motion.

The principal cylinder and valve dimensions during the various tests included in this report were as follows:

	Durin 2009-	g Tests -2045	During 2072-	, Tests 2098
Cylinder Diameter				
Right side (68)	22.071	inches	22.107	inches
Left side (69)	22.282	"	22.314	"
Valve Chamber Diameter				
Right side	12.031	2 7	12.102	"
Left side	12.020	"	12.078	"

*Code item number.

61

x

ALIFOR

FIG. 42. FRONT ELEVATION OF THE LOCOMOTIVE.

FIG. 43. CROSS SECTION THROUGH THE FRONT-END AND CYLINDERS.

FIG. 44. CROSS SECTIONS THROUGH THE FIREBOX

	During 2009-	g Tests 2045	During 2072-	rests 2098
Piston Stroke				
Right side (77)*	29.92	inches	29.94	inches
Left side (78)	29.94	22	29.94	"
Piston Rod Diameter				
Right side (135)	3.917	2.2	3.907	22
Left side (136)	3.928	"	3.907	>>
Cylinder Volume (both sides)	13.199	cu. ft.	13.199	cu. ft.
	During Tests 2009-2037		During Tests 2038-2098	
Clearance Volume			2000	2000
Ride side, head end (86)	9.89 T	er cent	11.42	per cent
Right side, crank end (87)	9.74	"	11.01	22
Left side, head end (88)	9.73	22	10.60	2.2
Left side, crank end (89)	10.06	22	11.01	,,

General Dimensions.—The principal general dimensions not already cited are shown in the following list.

$223\ 000$	lb.
200 900	"
$22\ 100$	"
$135\ 000$	"
$358\ 000$	"
17 ft. – 0	in.
25 ft. – 8	in.
63	in.
$331/_{2}$	in.
10 in. x 12	in.
9 in. x 12	in.
6 in. x 10	in.
	223 000 200 900 22 100 135 000 358 000 17 ft 0 25 ft 8 63 33 ¹ / ₂ 10 in. x 12 9 in. x 12 6 in. x 10

The actual average driving wheel diameter was 61.01 inches during tests 2009–2037, and 61.03 inches during tests 2038–2098. The corresponding actual average circumferences (code No. 19) were 15.972 and 15.978 feet respectively. The principal ratios are given below. Where two values of the ratio appear, the first is based on nominal dimensions, the second on actual dimensions.

*Code item number.

$\frac{\text{Weight on drivers}}{\text{Tractive effort}} = \frac{200\ 900}{39\ 180} = 5.12$
$\frac{\text{Weight on drivers}}{\text{Tractive effort}} = \frac{200 \ 900}{40 \ 470} = 4.96$
$\frac{\text{Total weight}}{\text{Tractive effort}} = \frac{223\ 000}{39\ 180} = 5.69$
$\frac{\text{Total weight}}{\text{Tractive effort}} = \frac{223\ 000}{40\ 470} = 5.51$
$\frac{\text{Tractive effort} \times \text{diameter of drivers}}{\text{Total heating surface}} = \frac{39180\times63}{3283} = 751.8$
$\frac{\text{Tractive effort} \times \text{diameter of drivers}}{\text{Total heating surface}} = \frac{40470\times61}{3283} = 751.8$
$\frac{\text{Firebox heating surface}}{\text{Total heating surface}} = \frac{168}{3283} = .0513$
$\frac{\text{Weight on drivers}}{\text{Total heating surface}} = \frac{200\ 900}{3283} = 61.19$
$\frac{\text{Total weight}}{\text{Total heating surface}} = \frac{223\ 000}{3283} = 67.92$
$\frac{\text{Heating surface}}{\text{Grate area}} = \frac{3283}{49.55} = 66.26$
$\frac{\text{Tube surface}}{\text{Firebox heating surface}} = \frac{3094}{168} = 18.41$
$\frac{\text{Total heating surface}}{\text{Cylinder volume}} = \frac{3283}{13.199} = 248.8$

Horse Power Constants.—The constants used in computing the test results are as follows:

For dynamometer horse power (power developed when the speed is one revolution per minute and the pull is one pound) the constants are

For tests 2009 to 20	037 (318)*	.0004840
For tests 2038 to 20	098 (318)	.0004842

*Code item number.
LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

For indicated horse power (power developed at one revolution per minute and one pound mean effective pressure) the constants are

Tests 20	09-2045	2072-2098
For right cylinder, head end (319)*	.02893	.02902
For right cylinder, crank end (320)	.02802	.02811
For left cylinder, head end (321)	.02948	.02957
For left cylinder, crank end (322)	.02857	.02866

*Code item number.

APPENDIX 2.

THE LABORATORY.

The general purpose underlying the design of this and of all other locomotive laboratories is to provide means whereby the locomotive machinery may be run and the locomotive worked throughout its range of capacity, while the locomotive as a whole remains stationary; thus permitting all test measurements to be made with the degree of accuracy possible in a stationary power plant test.

The laboratory equipment consists of, first, a means for so supporting the locomotive that its driving wheels may be rotated and that the power developed may be absorbed and dissipated; second, a means for anchoring the locomotive when so mounted and for measuring the tractive effort developed; third, means for supplying and measuring coal and water; and finally, means for disposing of the waste gases and exhaust steam.

The Building.—The building in which the plant is housed is shown in Fig. 45. It is 40 feet wide and 115 feet long, with a height of 22 feet under the roof trusses. At the rear end of the building is a coal room, above which are a platform for the exhaust fan and a wash-room. A basement extends under all of the main floor, except under the space occupied by the coal room. The walls are laid up both inside and out with faced brick, the floors are of reinforced concrete, and the roof is of the same material covered with slate. With the exception of the coal room all portions of the building are served by a ten-ton traveling crane.

Supporting Wheels and Axles.—The supporting mechanism consists primarily of pairs of wheels, whose location may be adjusted to suit the wheel base of any locomotive. Fig. 51 shows the general design of wheels, axles, bearings, and bed-plates. The supporting element for each pair of locomotive drivers consists of an axle, two wheels, and two bearings. The supporting wheels are 52 inches in diameter, have plain 5-inch tires, and are pressed on $11\frac{1}{2}$ -inch axles.

LABORATORY TESTS OF A CONSOLIDATION-LOCOMOTIVE

TO ILLINOIS ENGINEERING EXPERIMENT STATION

•

LABORATORY TESTS OF A CONSOLIDATION LOCGMOTIVE

FIG. 47. THE REAR END OF THE TESTING PIT, SHOWING THE REMOVABLE TRACK, THE SUPPORTING WHEELS AND THEIR BEARINGS, AND THE BRAKES.

72 HIANOIS ENGINEERING EXPERIMENT STATION

FIG. 48. AN EXTERIOR VIEW OF THE BRAKES.

FIG. 49. THE WEIGHING HEAD AND PEDESTAL OF THE DYNAMOMETER.

ILLINOIS ENGINEERING EXPERIMENT STATION

The axles and tires are of the highest grade of heat-treated carbon steel and were donated by the Midvale Steel Company. Provision has been made for replacing the 52-inch wheels by 72-inch wheels for testing high speed locomotives, where the use of the smaller wheels would involve rotating speeds as high as 530 revolutions per minute.

Bearings .- The bearings for the supporting-wheel axles are selfaligning, their shells being carried in spherical sockets which form the upper part of the pedestal. The journals are 91/2 inches by 20 inches, and the axles bear on the underside only. Oil for lubrication enters the bearing cap at two points and is supplied under head from an elevated tank. The pedestal is made in two parts, so that by removing the lower section, its height may be adjusted to provide for the 72-inch supporting wheels. This arrangement will continue to bring the top edge of the larger supporting wheels level with the outside track. The base of the pedestal is secured to a massive cast-iron bed-plate by T-bolts held in slots running the entire length of the bed. Each bedplate consists of three sections placed end to end, 18 inches in height and 36 inches wide over all. The length of the present bed-plate is 42 feet, which provides for a maximum driving-wheel base of 36 feet, and the foundation is built to receive two more 14-foot sections of bed-The supporting machinery rests on a concrete foundation 12 plate. feet wide and 93 feet long, which varies in thickness from 31/2 feet at the front to 5 feet at the rear end. The rear end is surmounted by a pyramidal base of reinforced concrete, to which the dynamometer is bolted.

Hydraulic Brakes.—Supported in this way the driving wheels are free to turn and the power produced at the driving wheel rim is absorbed by means of the brakes shown in Fig. 47, 48, and 52. One of these brakes is mounted on each end of each supporting-wheel axle. Each brake consists essentially of three cast iron discs (C, Fig. 52) which, bolted to the cast iron hub (F), are keyed to the supporting axle and form with it an integral revolving element. These three discs rotate between 1/16-inch copper diaphragms (D), bolted to the rim of a stationary housing (H), and flanged over the edges of the floating rings (E) and of the housing, to which they are secured by means of the expanding rings (G). The housing is prevented from turning by means of the links (L) attached to the bed-plate. The rubbing surfaces of the discs and diaphragms are lubricated with a medium grade of cylinder oil which enters the brake under pressure through the oil-

header (N) at the periphery of the discs, and through the oil-duct (K). The oil is taken off at M as it oozes out around the disc hub. The diaphragms form also within the casing four water compartments which have no communication whatever with the compartments in which the discs rotate. Water at about 60 deg. F. is forced through 3-inch hose connections into the brake at the lower header (B) and leaves through the upper header (A). The amount of water passing through any individual brake and the water pressure within the brake may be regulated at will by means of suitable valves in the piping. The brake load is controlled by thus modifying the water pressure. This is accomplished simultaneously for all of the brakes by means of the large control-valve in the brake supply main, shown in Fig. 50. The auxiliary brake-valves and gages shown at the left in this same figure permit the separate adjustment of load on each brake. Each of these brakes has the capacity of absorbing 450 horse power, having been designed to develop a resisting torque of 18 000 pounds-feet at speeds up to 130 revolutions per minute. This capacity allows for a considerable increase in wheel loads above that which could be imposed by the most heavily loaded driver of the present day.

Placing the Locomotive.—Fig. 47 shows the mounting machinery arranged to receive an eight-driver locomotive. The top of the supporting-wheels is level with the main floor of the building and onefourth inch higher than the outside track. Before the locomotive to be tested is placed upon the plant, its wheel-spacing is determined and the supporting-wheel centers spaced accordingly. The tender having been removed, the locomotive is backed into the laboratory and onto the temporary track shown in place between the supporting-wheels. The drivers run on their flanges over the temporary track, which leaves their treads free to engage the supporting-wheels, so that when the locomotive is properly placed the supporting-wheels carry all of the weight except, of course, that borne by leading or trailing trucks. The temporary track being relieved, may be removed. Mounted in this way, the locomotive is held in place and prevented from moving forward or backward by means of the dynamometer draw-bar, which is supplemented by two safety-bars that come into play in case of failure of the draw-bar. These three bars are shown in Fig. 50. Forward and trailing-truck wheels are carried on track sections which are level with the supporting wheels.

The Dynamometer.—The dynamometer, the chief function of which is to permit the tractive force of the locomotive to be measured, is

Σ

shown in Fig. 47, 49, and 50. It is of the Emery type and consists essentially of two parts: the weighing head, carried on a pedestal and shown in Fig. 49, and the measuring and recording scale shown in Fig. 50. The weighing head may be raised or lowered to suit the height of the drawbar of any locomotive. Within the weighing head is an enclosed oil-chamber with a flexible wall or diaphragm, which receives and balances any force transmitted through the drawbar of the locomotive. The pressure within this oil-chamber varies with the load, and is transmitted through a copper tube of small bore to a smaller oil-chamber known as the reducing chamber, located in the case with the measuring apparatus. The pressure thus produced in the reducing chamber moves the beam of a substantial but sensitive scale which measures the tractive force of the locomotive.

In order to prevent undue shocks from taking place within the weighing head of the dynamometer on account of variations in the force in the drawbar, an initial load of 50 000 pounds is imposed upon the oil behind the diaphragm by means of the capstan and springs located at the rear of the weighing head and shown at the left in Fig. 49. The weighing head of the dynamometer is so designed that by an adjustment of the capstan the tractive effort may be measured whether the locomotive drivers are turning forward or backward. For the sake of accuracy in determining the drawbar pull it is essential that the locomotive drivers be placed and maintained with their centers precisely above the centers of the supporting-wheels. To satisfy this requirement the longitudinal travel of the dynamometer drawbar from no load to full load must be reduced to a minimum. In this instrument the range of movement is only three one-thousandths of an inch. The scale beam reads directly to 20 000 pounds in 100-pound divisions, and a vernier gives readings to ten pounds. For drawbar pulls of more than 20 000 pounds, weights may be added as required. The dynamometer will measure drawbar pulls as high as 125 000 pounds.

A feature of interest in the design of the scale lies in the fact that the adjustment of the poise weight on the scale beam may be made automatically. This is accomplished by means of a small motor which is mounted on the scale beam and geared to a screw which passes through the poise weight. Attached to the scale beam is a contact arm, and any movement of the beam in either direction causes a series of mercury-cup contacts; the number of contacts depending on the amount of deflection of the beam, which in turn is caused by a change

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

in the load. When contact is made, an electrical circuit is closed and the motor runs in the direction required to bring the poise weight to a position of equilibrium. As soon as the load is balanced, the circuit is broken and the motor stops. This operation is repeated as often as the load changes, and is practically continuous. The action of the poise weight may also be controlled by a hand switch.

Water and Coal Supply.-The general water supply of the University is from driven wells, the demand upon which at times approaches their full capacity. In order therefore that the water which passes through the brakes shall not be wasted, provision has been made for collecting, cooling, and recirculating it. For this purpose a 100 000gallon concrete storage reservoir (see Fig. 45) has been built in the ground outside of the building. A supply pump for the brakes draws water from this reservoir through a 6-inch main and pumps it through the main control valve to a header, whence it is distributed through auxiliary supply control valves to the several brakes: after which it flows back through another set of auxiliary back-pressure control valves to 1 sump located in the basement of the laboratory. (See Fig. 53). The water is drawn from the sump by another pump and forced through five 2-inch whirling-spray nozzles above the surface of the water in the reservoir. Water direct from the University mains may also be used in the brakes when desirable.

Water for the locomotive boiler may be drawn from the reservoir or direct from the University mains, and forced by a separate pump to two elevated tanks which are shown in Fig. 47 and 54. Each of these tanks has a capacity of 2000 pounds and rests permanently on a platform scale. At a supply pressure of 45 pounds, each tank can be filled, weighed, and emptied in two and one-half minutes. From the weighing tanks, the water falls into the 18 000-pound capacity feed tank below, and thence passes through two 4-inch supply pipes to the locomotive injectors. Water for the hydraulic elevator used in raising coal from the main floor to the firing platform may be taken from the University main or from the storage tank. In either case the pressure is maintained at 60 pounds by a throttle-control valve on the supply pump. By these provisions in the piping, reservoir water alone may be used for feed-water, brakes, and elevator.

The coal-room shown in Fig. 53 occupies the rear end of the building. It is 22 feet wide and 40 feet long, and has a storage capacity of 300 tons. Coal for the tests is loaded into 1000-pound capacity wagons, run out onto the scales, raised by the elevator to the firing plat-

ILLINOIS ENGINEERING EXPERIMENT STATION

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE 81

.

EVATION OF THE LABORATORY.

ILLINOIS ENGINEERING EXPERIMENT STATION

FIG. 54. A CROSS SECTION THROUGH THE MIDDLE OF THE LABORATORY.

form, and there dumped. The firing platform is adjustable in height so as to suit the deck of any locomotive cab. The elevator has a capacity of 2000 pounds. It is also used to raise ashes from the level of the basement.

The Exhaust System.—Recognizing the value of accurate determininations of the total amount of cinders lost through the stack of the locomotive, it was early decided that if possible some means should be incorporated in this plant to collect all of the solid matter which passes through the locomotive front end. Preliminary designs of a cinder catcher which should have sufficient capacity to pass the total volume of waste gas, exhaust steam, and entrained air, and at the same time collect all the cinders from the largest modern locomotive working at high power, made it clear that such a collector would be too

large to be located conveniently within the building. Another point considered in the design of the exhaust system was the necessity of a stack of sufficient height to insure that the exhaust gases would be discharged far enough above ground to prove inoffensive to occupants of neighboring residences and University buildings. For this purpose it was decided that a stack 8 feet in diameter and 80 feet high would be required. Further study made it apparent that these two decisions could be embodied in one structure combining the cinder separator and the stack. This has been accomplished in the construction represented in cross-section by Fig. 55, and which is located outside and at the rear of the laboratory.

The system will be most easily understood by following the course of the exhaust gases after they leave the locomotive stack. (Fig. 53 and 54.) The gases and exhaust steam are discharged across an open space above the locomotive stack into a steel exhaust elbow, which carries them up and over to a horizontal duct running through the center of the roof-trusses of the building. The gases, exhaust steam, and solid matter are drawn through this elbow and duct by the exhaust fan, located near the roof at the rear end of the building. They are then passed through a breeching or flue to the separator previously referred to, the action within which may be best explained by reference to Fig. 55. The cinder-laden gases enter the separator at B and in order to leave, they must pass downward and around the sleeve A. This operation gives them a whirling motion, which causes the cinders by centrifugal force to move toward the outside wall, along which they drop to the hopper below, while the gases pass downward and out through the mouth of the sleeve. The cinders collecting at the bottom of the hopper are drawn off, weighed, and analysed between tests. The separator is surmounted by a 45-foot radial brick stack, through which the gases and steam are finally discharged.

On account of the corrosive nature of the mixture of exhaust gases and steam, it was necessary to avoid the use of metal throughout the exhaust system, as far as it was possible to do so. The exhaust elbow which receives the gases from the locomotive stack is necessarily made of steel and needs occasionally to be renewed. The horizontal duct, running through the center of the roof-trusses, is made of a hard and tough asbestos board known as "Transite," which is proof against corrosion. This duct is seven feet in diameter, and is built up in sections so that its length may be varied to suit the position of the locomotive stack. The final adjustment of the elbow above the stack of the

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

locomotive is obtained through the medium of a telescopic connection between the elbow and the duct. The fan has a runner six feet in diameter, and at a maximum speed of 300 revolutions per minute, will pass 140 000 cubic feet of gas per minute. The breeching between the fan and separator is also built of transite, and has a minimum cross-sectional area of about 24 square feet. The outer shell of the separator is built of reinforced concrete, and it is lined throughout with a course of hard red brick as protection from the corroding action of the gases. Between the lining and the shell is a 2-inch air space which acts as an insulator to protect the shell from overheating. Any leakage of gas through the lining into the air space is vented to the outside air through openings which are provided in the shell, and which serve also to circulate cool air through the air-space. Both the inside sleeve and the hopper are built of reinforced concrete. The stack itself is unlined, but is laid up with acid-proof cement. Provision was made in the design for traps in the bottom of the horizontal duct, whereby any solid matter that should accumulate within the duct could be removed and weighed. Experience has proved this to be unnecessary, as all portions of the duct and breeching have been self-cleaning under all test conditions thus far encountered

APPENDIX 3.

TEST METHODS.

The test methods employed were, in general, those outlined in the "Method of Conducting Locomotive and Road Tests" published in the Proceedings of the American Railway Master Mechanics' Association, volume 47, page 538.

Each test was made under predetermined conditions of speed and cut-off. Throughout each test all conditions subject to control were maintained as nearly constant as possible. Variations between different tests, or groups of tests, relative to engine conditions and fuel used have been recorded and discussed.

The test methods employed were, with minor exceptions, the same throughout all tests. All instruments were known to be correct within reasonable limits or were calibrated at intervals and suitable corrections applied to the observed data. Observations were, in general, taken every ten minutes. Indicator diagrams, particularly on comparatively short tests, were often taken at five minute intervals. The locations of the more important instruments and apparatus are indicated in Fig. 40 in Appendix 1, and in the figures of Appendix 2. The methods of applying the load to the engine, of measuring the drawbar-pull, and of collecting the stack cinders are made clear by the description of the Locomotive Laboratory in Appendix 2.

Duration of Tests.—The tests reported in Appendix 4 varied in length from 30 minutes to 3 hours. Tests were in general of such duration that from 120 to 180 pounds of coal would be burned per square foot of grate during the test. This is equivalent to a coal consumption of approximately 6000 to 9000 pounds per test. An examination of the data shows that for 39 tests the coal consumption was within this range; for 15 tests it was less than 6000 pounds; and for 4 tests it was more than 9000 pounds per test.

Starting and Closing a Test.—In general, fires were built upon a clean grate for each test. With sufficient steam pressure the locomotive was started and gradually brought to the required conditions of

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

speed and cut-off. The locomotive was operated for a short time under the required conditions and until a satisfactory fire and satisfactory boiler pressure were being maintained. On signal, the ash pan and cinder separator were closed, observations of water levels and steam pressure were made, and the test thereby started.

In closing a test, simultaneous observations were made upon water levels, steam pressure, and condition of fire. The locomotive was then stopped as quickly as conditions permitted. As soon as possible after stopping the locomotive, ashes were removed from the ash pan and cinders were removed from the front-end and from the cinder separator. In closing tests, it was sometimes advisable to remove some of the ash from the fire previous to the close of the test in order to bring the fire to the desired condition, and it was also occasionally advisable to remove some ash immediately after the close of the test. In all cases it was endeavored to have the same amount of combustible matter upon the grate at the close of the test as at the start. The removal of ash from the fire in connection with the closing of the test was primarily for the purpose of judging the amount of combustible upon the grate, not for the purpose of collecting the ash. The endeavor was made to have the boiler pressure and water level in the boiler substantially the same at the close as at the beginning of the test. Corrections were made for such irregularities as occurred.

Temperatures, Pressures, Gas Samples, Etc.-Temperatures in the fire-box were observed by means of a radiation pyrometer and temperatures in the front-end by means of a thermo-couple. Mercury thermometers were used at other points where temperature observations were made. Boiler pressure observations were taken from a gage located in the engine cab. Draft pressures were measured by means of U-tubes with water. Quality of steam was determined by means of a throttling calorimeter fitted with a suitable sampling tube. Front-end gas samples were collected through a sampling pipe provided with numerous small holes along the pipe, through which the gas was drawn. The time during which a single sample was collected varied from 20 to 60 minutes, depending mainly upon the total length of the test. The taking of samples usually covered the entire test period. Gas samples were analysed immediately after collection by means of the Orsat apparatus. Speed was measured by means of a stroke counter operated through the indicator reducing-motion.

Indicator Diagrams.—Four indicators were used, one at each end of each cylinder. During a majority of the tests, indicators were used which, through the operation of electrical attachments, took the four diagrams simultaneously. On account of minor accidents, it was sometimes necessary to use indicators where the pencil applications on some or all of the indicators were made by hand. In all cases, however, the applications were practically simultaneous.

Coal and Water.—Coal was delivered to the firing platform in lots of approximately 1000 pounds each. The time of firing the last shovelful of each lot was recorded. Water was weighed by means of two tanks upon platform scales. Each tank holds approximately 2000 pounds of water. The weighing tanks emptied into the feed-water supply-tank which has a capacity of 18 000 pounds. The height of water in the feed-water tank was maintained at an approximately constant level throughout a test. Observations were so taken that the amount of water furnished to the boiler could be calculated for intervals determined by the emptying of each weighing tank. Fig. 47 and 53 in Appendix 2 show the arrangement of the coal and water weighing apparatus.

Firing.—The locomotive was hand fired during all tests. The method of level firing was used, single shovelfuls of coal at a fairly constant rate being distributed uniformly over the grate. All large pieces of coal were broken, before firing, to lumps whose greatest dimension was from 3 to 4 inches. Two experienced firemen were employed. One of these men, however, was held entirely responsible and did practically all of the firing.

Samples of Coal, Ash, and Cinders.—Following the close of a test the ashes collected in the ash pan, the cinders collected in the frontend, and the cinders collected in the cinder separator were weighed and sampled.

A coal sample weighing from 200 to 500 lb. was collected during each test. This sample was collected while loading the cars taking coal to the firing platform, by placing about 50 lb. in the sampling can for each 1000-lb. car loaded. Care was exercised to make the sample representative.

The front-end cinders after being weighed were thoroughly mixed and about two pounds of cinders set aside as a sample. A sample of the stack cinders, weighing from 25 to 50 lb., was collected as the cinders were being weighed, a small amount being taken from each barrow load after passing over the scales. A sample of ash, weighing from 50 to 100 lb. was collected as the ash was being weighed, representative portions of the ash being selected.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

The large samples of coal, ash, and stack cinders were ground or crushed as necessary to reduce them to a maximum size of 1/4 inch, then thoroughly mixed and reduced by "quartering" to samples weighing about two pounds. The two pound samples of coal, ash, front-end and stack cinders were submitted to the Chemical Laboratory for analysis.

Chemical Analysis.—The chemical analyses and heat determinations were made by the Department of Chemistry of the University of Illinois. The methods employed were substantially those which have been recommended in the preliminary reports of the Joint Committee on Coal Analysis, of the American Society for Testing Materials and the American Chemical Society.

Proximate analyses and B.t.u. determinations were made for the coal sample for each test. Four ultimate analyses of coal were made —one for tests 2009 to 2019 inclusive, one for tests 2020 to 2045, one for tests 2046 to 2071, and one for tests 2072 to 2095. The ultimate analyses were made from composite samples. Each composite sample was made by combining from each air-dried sample of the tests to be represented, an amount proportional to the coal burned during the test. The ultimate analyses for the individual tests which appear in the tabulated results are based upon the percentages of moisture, ash, and sulphur as determined by the proximate analysis and upon the assumption that the carbon, hydrogen, oxygen, and nitrogen are proportional to the percentages as determined for the composite sample by ultimate analysis.

Each ash and einder sample was subjected to analysis to determine carbon, earthy matter, and moisture. B.t.u. determinations for ash, front-end and stack einders were estimated in the following manner. B.t.u. determinations were made upon ten ash samples of Series 1, upon three samples of Series 2, and upon one composite sample representing all tests 2072 to 2095 inclusive. Upon the assumptions that the heat content of the ash was entirely due to its carbon content, and that the heat content of the carbon was uniform in all of the ash, an average value for the heat content of one pound of carbon in the ash was computed. This value was determined as 14 672 B.t.u. per pound of carbon contained in the ash. Using this value as a basis the heat content per pound of ash was calculated for each test.

B.t.u. determinations were made for 10 front-end cinder samples of Series 1 and for one composite sample representing tests 2072 to 2095 inclusive. In a manner similar to that outlined in the case of

ILLINOIS ENGINEERING EXPERIMENT STATION

the ash, it was computed that the average value for the heat content of one pound of carbon contained in the front-end cinders was 14 336 B.t.u. and with this value as a basis the heat content per pound of front-end cinders was calculated for each test.

B.t.u. determinations were made for 10 stack cinder samples of Series 1, for a composite sample representing 10 tests during which the draft ranged from 2.2 to 4.5 inches of water, for a composite sample representing 9 tests during which the draft ranged from 5.3 to 9.2 inches of water, for a composite sample representing 5 tests during which the draft ranged from 10 to 12.8 inches of water, and for 3 individual tests during which the drafts were respectively 2.9, 7.0, and 11.9 inches of water. The 24 tests represented by the composite samples were tests 2072 to 2095 inclusive. The 3 individual tests mentioned were 2087, 2079, and 2089. With these heat determinations and in a manner involving the same assumptions as were made in the case of the ash and front-end cinders, it was computed that the heat content of one pound of carbon contained in the stack cinders was equivalent to (14932 - 44D) B.t.u. In this expression D is the draft in front of the diaphragm, expressed as inches of water. With the values determined by means of this formula the heat content per pound of stack cinders was calculated for each test.

APPENDIX 4.

DETAILED DATA AND RESULTS.

The purpose of this appendix is to present in detail the data and results of all the tests. It consists of 24 tables and 3 figures. Tables 13 to 35 inclusive contain the data and results for 61 tests, arranged in four groups. Table 36 contains information relating to the representative indicator diagrams which are shown in Fig. 56, 57, and 58 at the end of the appendix.

The first of the four groups of tests comprises tests 2009 to 2037 and has been designated as Series 1. The third group, designated as Series 2, comprises tests 2072 to 2098 (excepting No. 2090 and 2091). The results of Series 1 and 2 have been presented and discussed in sections VI to VIII in Part I. The data and results of the two remaining groups appear only in this appendix, and are elsewhere merely referred to incidentally.

Section IV of Part I defines these four groups of tests, and states the difference between them as regards the condition of the locomotive. The locomotive's condition has also been explained in Section II and in Appendix 1. The differences in condition as regards fuel are stated in Section V of Part I. The evaporative efficiencies recorded for tests 2024 and 2038 are enough higher than the corresponding results recorded for other tests to raise some question as to the correctness of their results. The conditions, however, under which they were made were such that high boiler efficiency was to be expected. The data and results for these tests have been included in the tables, and have been used throughout the discussion except as may have been specifically indicated.

The data and results are presented under 182 headings. The column-heading numbers are included between the numbers 344 and 900 and are arranged consecutively in the tables. Tables throughout the bulletin carry corresponding column-headings and numbers wherever the same data are presented. In general the column-headings and column-heading numbers are the same as used in the Code for Testing Locomotives published in the Proceedings of the American Railway Master Mechanics' Association, volume 47, page 538. The methods of calculation, unless entirely obvious, are given in detail in Appendix 5.

TABLE 13.

GENERAL CONDITIONS

		Spee				Position of	Levers
	Duration	Revol	utions	Equi	ivalent	Demense	
Laboratory Designation	of Test, Hours	Total	Average per Minute	Speed in Miles per Hour	Piston Speed in Feet per Minute	Lever, Notches from Center	Throttle
Code Item	345	351	352	353	354	360	363
$\begin{array}{c} \hline & \hline $	345 2.50 1.18 1.83 1.50 1.17 1.50 2.33 3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.50 2.33 1.50 1.67 1.50 1.67 1.50 1.67 1.83 1.50 1.00 1.83 1.50 1.00 1.83 1.00 1.17 1.00 1.33 1.00 2.38 0.58	$\begin{array}{r} 351\\ \hline 20\ 878\\ 18\ 969\\ 15\ 349\\ 12\ 575\\ 13\ 981\\ 14\ 398\\ 12\ 575\\ 13\ 981\\ 14\ 398\\ 12\ 802\\ 10\ 474\\ 9\ 656\\ 9\ 615\\ 9\ 670\\ 12\ 515\\ 6\ 080\\ 14\ 220\\ 10\ 474\\ 9\ 656\\ 9\ 670\\ 12\ 515\\ 6\ 080\\ 14\ 220\\ 16\ 500\\ 7\ 723\\ 8\ 793\\ 11\ 910\\ 7\ 830\\ 10\ 160\\ 5\ 586\\ 9\ 896\\ 10\ 127\\ 7\ 709\\ 13\ 190\\ 7\ 6\ 575\\ 14\ 277\\ 6\ 575\\ 14\ 277\\ 6\ 575\\ 8\ 751\\ 10\ 178\\ 7\ 081\\ 8\ 047\\ \end{array}$	Minute 352 196.8 139.5 139.7 199.7 200.0 200.0 80.0 80.0 80.0 80.0 80.5 80.1 80.6 139.7 109.4 110.0 50.8 109.8 169.4 85.8 169.3 50.8 111.8 169.3 50.8 110.0 168.8 110.0 168.8 110.0 168.8 110.1 109.9 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.9 109.7 109.8 109.9 109.7 109.8 109.5 50.8 109.9 109.7 109.8 109.9 109.7 109.8 109.9 109.7 109.8 109.9 109.7 109.8 109.6 50.6 229.9 109.4 169.6 50.6 229.9 109.4 109.4 109.4 109.4 109.5 50.6 229.9 109.4 109.4 109.4 109.8 109.8 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.7 109.8 109.8 109.7 109.8 109.8 109.9 109.7 109.8 109.8 109.8 109.8 109.9 109.7 109.8 109.8 109.9 109.7 109.8 109.8 109.9 109.7 109.8 109.9 109.5 109.8 109.9 109.7 109.8 109.8 109.9 109.7 109.8 109.8 109.9 109.7 109.8 109.8 109.9 109.7 109.8 109.9 109.7 109.8 109.9 109.8 109.8 109.8 109.9 109.8 109.8 109.9 109.8 109.	per Hour 353 25.2 35.7 25.3 36.3 36.3 36.3 36.3 36.3 36.3 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.5 14.5 14.6 14.5 14.6 14.5 14.5 14.6 14.5 14.5 14.6 14.5 14.6 14.5 14.5 14.5 14.5 14.6 14.5 14.6 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	per Minutø 354 694.6 981.8 696.3 697.2 996.4 998.0 998.0 399.2 399.2 402.0 401.7 399.7 402.2 693.6 253.0 545.9 548.9 251.0 547.9 845.3 428.1 845.3 428.1 845.3 428.1 845.3 428.1 557.9 844.8 253.4 548.7 548.5 548.4 548.7 548.5 548	Center 360 4 5 6 8 6 4 4 6 8 6 4 6 8 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 8 8 8 8 8 8	363Full
$\begin{array}{c} 220-32-F\\ 110-24-F\\ 165-24-F\\ 220-24-F\\ 110-16-F\\ 55-24-F\\ 165-16-F\\ 165-16-F\\ 10-48-F\\ 110-48-F\\ 110-46-F\\ 220-16-F\\ 220-40-F\\ 165-32-F\\ 110-56-F\\ 110-56-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 110-24-F\\ 165-32-F\\ \end{array}$	$\begin{array}{c} 0.58\\ 1.83\\ 1.17\\ 1.00\\ 2.17\\ 2.50\\ 0.83\\ 1.67\\ 0.83\\ 2.00\\ 2.83\\ 2.50\\ 1.67\\ 0.58\\ 0.83\\ 0.50\\ 0.42\\ 1.00\\ 1.50\\ 1.88\\ 0.83\\ 1.00\\ 0.50\\ \end{array}$	$\begin{array}{c} 8 & 047 \\ 12 & 174 \\ 11 & 830 \\ 13 & 914 \\ 14 & 346 \\ 7 & 593 \\ 8 & 484 \\ 17 & 031 \\ 5 & 519 \\ 6 & 136 \\ 8 & 725 \\ 16 & 660 \\ 23 & 418 \\ 8 & 075 \\ 16 & 660 \\ 23 & 418 \\ 8 & 075 \\ 16 & 660 \\ 23 & 418 \\ 8 & 075 \\ 16 & 660 \\ 23 & 418 \\ 8 & 075 \\ 16 & 660 \\ 23 & 418 \\ 8 & 075 \\ 16 & 660 \\ 23 & 5 & 078 \\ 2 & 578 \\ 2 & 578 \\ 2 & 587 \\ 6 & 640 \\ 5 & 079 \end{array}$	$\begin{array}{c} 229.9\\ 110.7\\ 169.0\\ 231.9\\ 110.4\\ 50.6\\ 169.7\\ 170.3\\ 110.4\\ 51.1\\ 51.3\\ 111.1\\ 234.2\\ 230.7\\ 168.5\\ 167.4\\ 110.9\\ 51.3\\ 51.5\\ 52.1\\ 51.7\\ 110.7\\ 169.3 \end{array}$	41.7 20.1 30.7 42.1 20.0 9.2 30.8 30.9 20.0 9.3 20.2 42.5 41.9 30.6 30.4 9.3 9.4 9.5 9.4 20.1 30.7	$\begin{array}{c} 1147.2\\ 552.2\\ 848.3\\ 1157.2\\ 550.7\\ 252.5\\ 846.7\\ 849.8\\ 550.8\\ 255.1\\ 256.1\\ 1554.4\\ 1168.6\\ 1151.2\\ 840.8\\ 835.5\\ 553.3\\ 255.9\\ 257.0\\ 260.0\\ 258.2\\ 844.8\\ \end{array}$	8 6 6 4 6 10 4 12 10 6 4 4 12 10 6 8 12 14 12 10 8 12 12 6 8 8	Full Full Full Full Full Full Full Full
	Laboratory Designation	Laboratory DesignationDuration of Test, Hours (2000) 345 $138-16-F$ $193-20-F$ 2.50 $193-20-F$ 118 1.88 $138-24-F$ 1.83 1.50 $193-32-F$ 1.50 1.50 $193-32-F$ 1.50 1.50 $193-32-F$ 1.50 1.50 $193-32-F$ 1.50 1.50 $193-32-F$ 1.50 1.50 $193-32-F$ 1.50 2.67 $83-32-F$ 2.00 2.67 $83-32-F$ 2.00 2.67 $83-32-F$ 2.00 2.00 $83-32-F$ 2.00 2.00 $83-32-F$ 2.00 2.00 $83-32-F$ 2.00 2.00 $83-32-F$ 1.50 2.00 $138-40-F$ 1.50 1.50 $165-32-F$ 1.50 1.65 $165-32-F$ 1.50 1.67 $110-40-F$ 1.00 1.00 $15-24-F$ 1.00 1.00 $15-24-F$ 1.00 1.00 $10-40-F$ 1.00 1.00 $110-40-F$ 1.00 1.00 $110-40-F$ 1.00 1.00 $110-42-F$ 2.00 1.00 $110-42-F$ 1.00 1.00 $110-42-F$ 1.00 1.00 $110-42-F$ 1.00 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 $110-42-F$ 1.00 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

TABLE 14.

1		Te	emperatu	re, Deg	g. Fahr.		Pre lb. pe	ssure, r sq. in.
Test	Laboratory		Labo	atory			Bailon	Labor-
110.	Designation	Front- end	Dry Bulb	Wet Bulb	Feed Water	Fire Box	Aver- age	atory Baro- metric
	CodeIteman	367	368	369	373	374	380	388
2009	138-16-F		93	75	64.1	1950	190.5	14.3
2010	193-20-F 138-24-F	712	86	69	59.5 61.7	1959	192.0	14.4
2013	138-32-F	754	87	70	62.2	1957	190.1	14.4
2014	193-32-F	751	94	75	62.9		191.5	14.4
2016	193-16-F	671	94	75	63.4		192.1	14.4
2017	83-16-F	619	93	76	72.2		193.4	14.4
2018	83-24-F	684	86	73	62.1		194.2	14.3
2020	83-24-F	499	70	61	64.9		190.7	14.4
2021	83-16-F	494	66	55	57.8	1552	193.7	14.5
2023	138-40-F	639	64	55	57.7	1898	190.8	14.4
2024	55-24-F	517	66 58	51	59.3	1829	196.3	14.5
2027	110-10-1 110-24-F	552	64	56	60.2	1677	196.8	14.4
2028	55-32-F	515	66	58	70.4	1700	198.1	14.4
2029	165-24-F	565	76	68	60.2	1636	197.1	14.3
2031	83-40-F	570	72	66	60.6	1811	196.4	14.3
2032	165-32-F 110-48-F	603	73	67	59.6 60.6	1630	196.8	14.3
2034	193-40-F	632	76	69	59.8	1879	192.1	14.3
2035	110-40-F	589	73	65 69	61.7	1663	194.3	14.3
200.	100-10-1				0010	1000	150.1	
2038	55-24-F	510	64 62	52	58.2	1544	198.3	14.5
2040	165-40-F	640	64	55	57.9	1828	197.1	14.5
2041	110-40-F	621	58	52	55.0	1800	192.3	14.5
2042	110-24-F	646	55	50	58.4	1758	190.8	14.5
2044	110-56-F	686	54	48	56.8	1871	190.1	14.4
2045	110-16-F	551	01	54	59.6	1775	197.1	14.4
2072	110-40-F	620	59	54	59.5	1643	196.7	14.4
2073	165-32-F	637	59	48	50.9	1662	197.0	14.5
2075	55-32-F	543	58	52	58.1	1661	198.1	14.4
2076	220-32-F	675	58	54	60.1 58.7	1785	196.0	14.4
2078	165-24-F	595	62	53	58.4	1597	196.4	14.5
2079	220-24-F	614	64	54	58.8	1688	197.4	14.5
2081	55-24-F	507	63	54	57.9	1407	198.2	14.6
2082	165-40-F	673	55	51	63.6	1458	195.2	14.3
2083	105-10-F 110-48-F	653	60	56	52.6	1201	198.1	14.4
2085	55-40-F	545	62	55	44.7		197.9	14.4
2086	55-24-F	506	69	57	56.2	1	199.1	14.4
2088	220-16-F	563	73	61	58.1	10	197.8	14.2
2089	220-40-F	703	59	50	58.4		194.9	14.4
2093	165-48-F	702	60	52	59.3		191.5	14.3
2094	110-56-F	679	65	58	59.0		196.3	14.2
2095	55-40-F	584	00	22	61.4		196.1	14.4
2097	55-32-F	573			58.6		198.8	14.4
2098	55-48-F	110			39.2		190.2	14.4
2090 2091	110-24-F 165-32-F	552 626	67 64	58 57	60.1 59.5	1	199.0 198.6	14.4 14.4

TEMPERATURE AND PRESSURE

TABLE 15.

		Draft, in. of Water				Injectors in Action					Factor
Test	Laboratory	Fron	t-end					-	Quality	Correc-	
No.	Designation	Front of Dia- phragm	Back of Dia- phragm	Fire Box	Ash Pan	Right, Total Hours	Left, Total Hours	Right, No. of Times	Left, No. of Fimes	in Dome	Quality of Steam
	Code Item &	394	395	396	397	403	404	405	406	407	412
2009 2010 2012 2013 2014 2015 2016 2017 2029 2020 2021 2022 2022 2022 2024 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 55-24-F\\ 110-16-F\\ 110-32-F\\ 110-32-F\\ 110-32-F\\ 165-32-F\\ 110-48-F\\ 193-40-F\\ 110-48-F\\ 193-40-F\\ 165-40-F\\ \end{array}$	$\begin{array}{c} 3.7\\ 5.5\\ 5.8\\ 7.6\\ 9.1\\ 7.3\\ 5.0\\ 2.7\\ 3.9\\ 5.4\\ 2.2\\ 4.8\\ 9.0\\ 2.6\\ 2.9\\ 4.7\\ 3.2\\ 6.2\\ 4.8\\ 2.6\\ 8.2\\ 10.2\\ 10.2\\ \end{array}$	$\begin{array}{c} 2.6\\ 3.9\\ 4.0\\ 5.1\\ 6.0\\ 4.9\\ 3.5\\ 1.9\\ 2.7\\ 8.7\\ 2.3\\ 1.4\\ 8.0\\ 5.6\\ 1.6\\ 2.7\\ 2.2\\ 8.9\\ 3.9\\ 4.3\\ 4.9\\ 5.1\\ 6.6\\ 5.2\\ 6.2\\ \end{array}$	$1.6 \\ 2.1 \\ 2.7 \\ 3.2 \\ 2.0 \\ 0.5 \\ 2.0 \\ 1.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 1.5 \\ 1.1 \\ 1.8 \\ 2.0 \\ 2.2 \\ 2.8 \\ 2.2 \\ 3.2 $		$\begin{array}{c} 1.6\\ 1.3\\ 2.0\\ 0.5\\ 1.2\\ 1.4\\ 2.1\\ 2.1\\ 1.5\\ 1.7\\ 1.5\\ 0.7\\ 0.3\\ 0.6\\ 0.5\\ 0.5\end{array}$	0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.1 1.3 1.0 1.2 0.0	19 29 3 26 37 50 38 32 31 1 16 17 13 24	0 0 0 1 0 0 0 0 0 0 0 4 5 1 1 1 0	0.990 0.987 0.989 0.985 0.984 0.987 0.993 0.991 0.993 0.991 0.9945 0.9956 0.9956 0.9956 0.9956 0.9950 0.9952 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9857 0.9854 0.9856 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9856 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9915 0.9912 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9955 0.9955 0.9915 0.9955 0.9915 0.9955 0.9915 0.99550 0.99550 0.9	0.9919 0.9908 0.9918 0.9888 0.9888 0.9919 0.9935 0.9949 0.9935 0.9949 0.9968 0.9950 0.9968 0.9956 0.9968 0.9956 0.9930 0.9964 0.9936 0.9936 0.9930 0.9926 0.9936 0.99566 0.99566 0.9956 0.9956 0.99566 0.9956 0.9956 0.9956 0.9956
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F 110-16-F	2.6 6.9 9.9 8.7 4.9 9.7 11.8 3.2	1.7 4.5 6.8 5.5 3.2 5.9 7.5 2.2	1.1 2.4 3.2 2.2 1.7 2.4 3.2 1.1	0.3 0.6 0.5 0.4 0.7 0.7 0.3	$ \begin{array}{c} 1.8\\ 1.5\\ 0.6\\ 0.8\\ 2.0\\ 0.6\\ 0.8\\ 2.2\\ \end{array} $	0.0 0.0 1.0 1.2 0.0 1.2 1.0 0.0	1 16 20 1 24 5 1	0 0 1 1 0 1 1 0	0.9934 0.9917 0.9917 0.9900 0.9932 0.9866 0.9900 0.9934	0.9953 0.9941 0.9940 0.9852 0.9952 0.9904 0.9928 0.9953
2072 2073 2074 2075 2076 2077 2080 2080 2080 2081 2082 2084 2085 2084 2085 2085 2085 2089 2092 2092 2094 2095 2095 2097 2095	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 10-16-F\\ 155-24-F\\ 165-16-F\\ 110-48-F\\ 10-48-F\\ 10-48-F\\ 10-6-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 10-56-F\\ 10-56-F\\ 10-56-F\\ 10-56-F\\ 55-48-F\\ 10-56-F\\ 55-48-F\\ 10-56-F\\ 55-48-F\\ 10-56-F\\ 55-48-F\\ 10-56-F\\ 1$	8.0 5.7 8.5 2.8 9.2 4.1 6.0 7.0 2.9 2.2 11.2 2.9 4.3 10.0 4.0 2.2 2.9 2.2 11.9 8.2 2.9 2.2 11.9 8.2 2.5 11.9 8.2 2.5 11.9 8.2 2.5 5.3 4.2 1.0 9.2 4.3 10.0 4.5 10.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	4.9 3.5 5.3 1.5 7.3 2.5 9 4.8 2.0 1.5 3.9 4.8 2.0 1.5 3.2 5.7 5.3 1.9 2.9 7.1 5.1 5.1 5.1 3.0 2.9 3.0 7.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5	$\begin{array}{c} 2.0\\ 1.6\\ 2.4\\ 0.9\\ 2.8\\ 1.9\\ 2.3\\ 1.0\\ 0.7\\ 3.4\\ 1.0\\ 0.7\\ 3.5\\ 2.2\\ 3.5\\ 2.2\\ 3.0\\ 1.5\\ 1.2\\ 1.0\\ 1.9\\ 1.0\\ 1.9\\ 1.0\\ 1.9\\ 1.0\\ 1.9\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	$\begin{array}{c} 0.7\\ 0.5\\ 0.5\\ 0.8\\ 0.5\\ 0.4\\ 0.2\\ 0.2\\ 0.6\\ 0.4\\ 0.8\\ 0.3\\ 0.2\\ 0.3\\ 0.7\\ 0.6\\ 0.9\\ 0.8\\ 0.4\\ 0.5\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	$\begin{array}{c} 0.3\\ 1.3\\ 0.5\\ 2.3\\ 3.8\\ 1.8\\ 1.2\\ 0.1\\ 2.25\\ .0.4\\ 1.7\\ 0.8\\ 2.5\\ 1.7\\ 0.6\\ 0.3\\ 0.3\\ 0.4\\ 1.0\\ 1.5\\ 1.8\\ 0.8\\ \end{array}$	$\begin{array}{c} 1.0\\ 0.0\\ 0.9\\ 0.6\\ 0.0\\ 0.1\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	20 1 21 10 3 13 13 14 18 11 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 3 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0	0.9895 0.9919 0.9861 0.99552 0.99344 0.9947 0.9955 0.9889 0.9956 0.9962 0.9962 0.9962 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9956 0.9955 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550 0.99550000000000	0.9925 0.9942 0.9901 0.9870 0.9888 0.9963 0.9921 0.9968 0.9974 0.9959 0.9926 0.9974 0.9959 0.9924 0.9917 0.9959 0.9924 0.9918 0.9914 0.9918 0.9924 0.9914 0.9918 0.9924 0.9919 0.9925 0.9855 0.9885
2090 2091	110-24-F 165-32-F	4.2 8.2	2.9 4.9	1.1 2.1	0.8	1.0	0.0	1	0	0.9952	0.9966

DRAFT, INJECTORS, QUALITY OF STEAM.

TABLE 16.

Test No.	Laboratory Designation	Coal Fired Total, 1b.	Dry Coal Fired Total, 1b.	Combust- ible by Analysis Total, 1b.	Ash by Analysis Total, 1b.	Front- end Cinders Total, 1b.	Stack Cinders Total, 1b.	Front End and Stack Cinders Total,
-	Code Item	418	419	420	421	422	423	424
2009 2010 2012 2013 2014 2016 2017 2018 2020 2021 2022 2022 2022 2022 2022	$\begin{array}{c} 018111112\\ 138-16-F\\ 193-20-F\\ 138-32-F\\ 193-24-F\\ 193-24-F\\ 193-24-F\\ 193-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-32-F\\ 138-40-F\\ 138-40-F\\ 138-40-F\\ 110-16-F\\ 110-16-F\\ \end{array}$	7497 5147 7657 7832 7978 8298 8603 6535 7589 7793 5416 5040 8198 11556 4104 5693	6618 4537 6797 7124 7230 7391 7595 5872 6765 6965 4943 4422 7346 10031 3628 4969	5786 3943 5835 6119 6153 6365 6368 5079 5795 6096 4318 3837 6222 8637 3171 4265	832 593 962 1005 1077 1026 1228 793 970 865 625 585 1124 1394 456 704	26 10 9 10 9 12 11 12 29 14 16 22 8 7 20 25	413 507 648 925 1045 1092 681 187 380 586 286 286 243 898 2075 115 279	*2* 439 517 657 935 1054 1104 692 199 409 600 302 265 906 2082 135 304
2027 2028 2029 2030 2031 2032 2033 2034 2035 2037	110-24-F 55-32-F 110-32-F 165-24-F 83-40-F 165-32-F 110-48-F 193-40-F 110-40-F 165-40-F	9322 6414 7257 7501 7686 4104 7940 8916 7590 7625	8139 5615 6366 3568 6835 7767 6493 6554	7075 4887 5445 5888 5414 3037 5839 6501 5575 5631	1064 729 918 801 952 532 996 1266 918 923	20 14 15 11 13 10 10 10 6 11	745 372 869 856 944 662 1219 1499 934 1206	765 386 884 867 957 672 1229 1509 940 1217
2039 2040 2041 2042 2043 2044 2045	110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F 110-16-F	4202 7678 8515 7957 7771 9979 9623 6061	6775 7482 6838 6713 8637 8361 5258	2583 5639 6325 5851 5851 7431 7080 4369	1136 1157 987 992 1205 1282 889	19 17 10 6 17 10 23	$ \begin{array}{r} 1208 \\ 808 \\ 1617 \\ 1218 \\ 663 \\ 1829 \\ 1771 \\ 453 \\ \end{array} $	825 1627 1224 669 1846 1781 476
2073 2073 2074 2075 2077 2077 2078 2080 2080 2083 2083 2084 2085 2086 2085 2086 2088 2082 2083 2092 2093 2093 2095 2097 2098	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 105-32-F\\ 55-32-F\\ 220-32-F\\ 110-24-F\\ 220-32-F\\ 110-4-F\\ 220-24-F\\ 110-16-F\\ 165-40-F\\ 165-16-F\\ 110-48-F\\ 55-24-F\\ 110-16-F\\ 220-16-F\\ 105-32-F\\ 105-48-F\\ 165-48-F\\ 110-56-F\\ 55-48-F\\ 55-40-F\\ 55-32-F\\ 55-48-F\\ 55-48-$	6802 6706 6236 5394 6896 6332 6031 5591 5591 6453 6991 6660 6453 7004 6445 7004 6445 7004 6445 3491 5933 3799	5927 5812 6015 5430 4568 6015 5492 5783 5248 4937 7495 5564 6595 6116 5860 6185 5588 6491 4700 5108 3334	$\begin{array}{c} 5103\\ 5116\\ 5206\\ 4791\\ 3983\\ 5240\\ 4786\\ 4355\\ 6624\\ 4847\\ 5633\\ 5353\\ 5082\\ 5353\\ 5082\\ 5353\\ 4688\\ 5558\\ 4128\\ 4424\\ 3055\\ 2854 \end{array}$	824 694 805 639 585 775 706 662 581 582 871 717 963 763 763 763 847 900 933 572 664 459 480	12 3 13 14 14 16 14 15 18 19 21 20 17 17 18 17 18 17 18 17 18 17 18 17 18 17 19 20 17 18 17 10 10 10 10 10 10 10 10 10 10	$1140 \\ 736 \\ 949 \\ 385 \\ 1057 \\ 449 \\ 758 \\ 873 \\ 210 \\ 155 \\ 1640 \\ 432 \\ 1244 \\ 434 \\ 310 \\ 296 \\ 456 \\ 1728 \\ 698 \\ 1391 \\ 811 \\ 250 \\ 811 \\ 250 \\ 100 $	748 952 398 1071 463 774 887 225 1659 453 1264 451 327 314 473 1741 710 1401 824 260
2090 2091	110-24-F 165-32-F	8605 8028	3176 2626	2772 2302	404 324	14 12	312 431	826 443

COAL, CINDERS, ASH, SMOKE, AND HUMIDITY.

TABLE 17.

		Cinder	Stack Cinder	Ash	from Ash	Pan	Smoke	Humidity
Test No.	Laboratory Designation	Per cent of Total Dry Coal Fired	Loss, Per cent of Total Dry Coal Fired	Total, lb.	Per cent of Total Dry Coal Fired	Per cent of Ash by Analysis	Per cent of Blackness by Ringle- mann Chart	Moisture per lb. of Dry Air, lb.
	Codeltemas	426	427	428	429	430	431	435
2009 2010 2012 2013 2014 2015 2016 2017 2020 2020 2022 2022 2022 2022 2022	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} \textbf{1.1.3}\\ \textbf{1.6}\\ \textbf{11.4}\\ \textbf{9.7}\\ \textbf{13.1}\\ \textbf{14.6}\\ \textbf{14.9}\\ \textbf{9.1}\\ \textbf{3.4}\\ \textbf{6.1}\\ \textbf{8.6}\\ \textbf{6.1}\\ \textbf{8.6}\\ \textbf{6.1}\\ \textbf{12.3}\\ \textbf{20.8}\\ \textbf{3.7}\\ \textbf{6.1}\\ \textbf{9.4}\\ \textbf{6.9}\\ \textbf{13.9}\\ \textbf{13.0}\\ \textbf{15.0}\\ \textbf{18.8}\\ \textbf{18.0}\\ \textbf{19.4}\\ \textbf{14.5} \end{array}$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$\begin{array}{c} 172 \\ 69 \\ 69 \\ 318 \\ 301 \\ 159 \\ 557 \\ 445 \\ 295 \\ 309 \\ 387 \\ 151 \\ 455 \\ 568 \\ 631 \\ 202 \\ 390 \\ 503 \\ 513 \\ 429 \\ 503 \\ 374 \\ 434 \\ 222 \\ 409 \\ 645 \\ 518 \\ \end{array}$	$\begin{array}{c} 2.6\\ 1.5\\ 4.7\\ 4.2\\ 2.2\\ 7.5\\ 5.9\\ 5.0\\ 4.6\\ 5.6\\ 3.1\\ 10.3\\ 7.7\\ 6.3\\ 5.6\\ 7.9\\ 6.3\\ 7.6\\ 7.9\\ 6.3\\ 7.6\\ 6.8\\ 6.2\\ 6.0\\ 8.3\\ 8.0\\ \end{array}$	$\begin{array}{c} 20.7\\ 11.6\\ 33.0\\ 30.0\\ 14.7\\ 54.2\\ 36.2\\ 37.2\\$	45 43 20 44 55 51	$\begin{array}{c} -0.014\\ -0.08\\ 0.011\\ 0.014\\ 0.014\\ 0.014\\ 0.015\\ 0.011\\ 0.016\\ 0.010\\ 0.006\\ 0.010\\ 0.006\\ 0.007\\ 0.005\\ 0.007\\ 0.005\\ 0.007\\ 0.008\\ 0.009\\ 0.011\\ 0.013\\ 0.013\\ 0.013\\ 0.014\\ 0.011\\ \end{array}$
2037 2038 2039 2040 2041 2042 2043 2044 2045	165-40-F 55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F 110-16-F	3.9 12.2 21.8 17.9 10.0 21.4 21.3 9.0	$ 18.4 \\ 3.4 \\ 11.9 \\ 21.6 \\ 17.8 \\ 9.9 \\ 21.2 \\ 21.2 \\ 8.6 $	445 280 476 393 400 410 463 410 400	6.8 7.6 7.0 5.3 5.9 6.1 5.4 4.9 7.6	48.2 39.8 41.9 34.0 40.5 41.3 38.4 32.0 45.0	32	.014 .006 .008 .007 .007 .007 .006 .006 .006
$\begin{array}{c} 2072\\ 2073\\ 2074\\ 2075\\ 2076\\ 2077\\ 2080\\ 2080\\ 2080\\ 2080\\ 2080\\ 2083\\ 2084\\ 2085\\ 2084\\ 2085\\ 2084\\ 2085\\ 2086\\ 2087\\ 2088\\ 2092\\ 2093\\ 2092\\ 2093\\ 2094\\ 2095\\ 2096\\ 2097\\ 2098 \end{array}$	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 100-42-F\\ 110-24-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 165-40-F\\ 165-16-F\\ 110-48-F\\ 110-48-F\\ 110-48-F\\ 110-6-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 165-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$12.9 \\ 15.8 \\ 7.3 \\ 23.4 \\ 7.7 \\ 14.1 \\ 15.3 \\ 4.3 \\ 3.5 \\ 22.1 \\ 8.2 \\ 19.2 \\ 7.4 \\ 5.6 \\ 5.1 \\ 8.5 \\ 26.8 \\ 15.1 \\ 27.4 \\ 23.5 \\ 7.8 \\ \end{array}$	$\begin{array}{c} 19.2\\ 12.7\\ 15.8\\ 7.1\\ 23.1\\ 7.5\\ 13.8\\ 15.1\\ 4.0\\ 3.1\\ 21.9\\ 7.8\\ 18.9\\ 7.1\\ 5.3\\ 4.8\\ 8.2\\ 26.6\\ 14.9\\ 27.2\\ 23.1\\ 7.5\\ \end{array}$	$\begin{array}{c} 273\\ 336\\ 416\\ 216\\ 313\\ 282\\ 569\\ 428\\ 427\\ 576\\ 551\\ 550\\ 555\\ 655\\ 428\\ 555\\ 655\\ 429\\ 523\\ 429\\ 523\\ 429\\ 256\\ \end{array}$	$\begin{array}{c} 4.6\\ 5.8\\ 6.9\\ 4.0\\ 6.9\\ 3.3\\ 5.1\\ 9.8\\ 8.7\\ 7.7\\ 7.7\\ 10.1\\ 7.6\\ 9.5\\ 9.8\\ 9.4\\ 6.6\\ 7.6\\ 9.7\\ 6.7\\ 7.7\end{array}$	$\begin{array}{c} 33.1\\ 48.4\\ 51.7\\ 33.8\\ 53.5\\ 25.8\\ 39.9\\ 86.0\\ 73.7\\ 73.4\\ 66.1\\ 78.7\\ 52.0\\ 69.5\\ 71.3\\ 71.3\\ 58.1\\ 46.0\\ 62.4\\ 74.5\\ 51.0\\ 53.3 \end{array}$	42 35 45 20	.008 .006 .007 .007 .007 .007 .007 .007 .007
2090 2091	110-24-F 165-32-F	10.8 16.9	9.8 16.4	315 260	9.9 9.9	78.0 80.3		.008

COAL, CINDERS, ASH, SMOKE, AND HUMIDITY.

TABLE 18.

COAL ANALYSIS.

			Prox Co	imate Ana bal as Fir	alysis ed		Calorific	Ultimate Analysis Coal as Fired			
Test No.	Laboratory Designation	Fixed Carbon, per cent	Volatile Matter, per cent	Moisture, per cent	Ash, per cent	Sulphur Separ- ately Deter- mined, per cent	Value per lb. of Coal as Fired, B.t.u.	Carbon, per cent	Hydro- gen, per cent	Nitro- gen, per cent	Oxy- gen, per cent
11	CodeItem	437	438	440	441	442	443	449	450	451	452
2009	138-16-F	38.21	38.97	11.72	11.10	2.33	11 083	61.68	4.48	0.85	7.84
2010	193-20-F	37.71	38.90	11.86	11.53	3.54	10 959	60.22	4.37	0.83	7.65
2012	138-24-F	38.08	38.12	11.23	12.57	3.43	10 901	59.97	4.36	0.83	7.62
2013	193-32-F	38.14	38 99	9.04	13.50	3.30	11 135	60.74	4.40	0.85	7.72
2015	193-24-F	38.16	38.55	10.92	12.37	3.51	10 963	60.32	4.38	0.83	7.66
2016	193-16-F	36.86	37.16	11.71	14.27	4.16	10 588	57.57	4.18	0.79	7.31
2017	83-16-F	38.80	38.92	10.15	12.13	3.50	11 179	61.17	4.44	0.84	7.72
2018	83-24-F	38.25	38.11	10.86	12.78	3.12	10 932	61.80	4.38	0.83	7.86
2020	83-24-F	39.40	40.33	8.73	11.54	3.86	11 228	62.42	3.80	1.61	8.03
2021	83-16-F	37.59	38.54	12.27	11.60	3.69	10 768	59.60	3.63	1.54	7.67
2022	83-32-F	37.57	38.33	10.39	13.71	4.36	10 642	58.86	3.59	1.52	7.57
2023	138-40-F	36.41	38.33	13.20	12.06	4.38	10 686	57.89	3.53	1.50	7.45
2024	110-16-F	35.94	40.25	11.01	12.36	3.41	10 743	58.61	3.57	1.51	7.54
2027	110-24-F	37.38	38.52	12.69	11.41	3.42	11 078	59.64	3.63	1.54	7.67
2028	55-32-F	37.11	39.08	12.45	11.36	3.21	11 077	60.05	3.66	1.55	7.72
2029	110-32-F	35.06	39.97	12.32	12.65	3.67	10 948	58.71	3.58	1.52	7.55
2030	165-24-F	38.03	40.46	10.83	10.68	3.61	0 020	55.36	3.70	1.59	7.92
2032	165-32-F	35.55	38.44	13.05	12.96	4.36	10 644	57.29	3.49	1.48	7.37
2033	110-48-F	35.99	37.55	13.92	12.54	4.16	10 539	57.08	3.48	1.48	7.34
2034	193-40-F	34.86	38.05	12.89	14.20	3.99	10 309	56.71	3.45	1.47	7.29
2035	110-40-F	34.41	39.04	14.46	12.09	4.09	10 547	57.07	3.48	1.48	7 36
2001	105-40-1	35.09	38.10	14.05	12.10	4.01	10 095	01.00	0.10	1.10	1.00
2038	55-24-F	34.50	36.54	12.24	16.72	3.63	10 041	55.46	3.38	1.43	7.13
2039	110-32-F	35.80	37.65	11.76	14.79	4.36	10 355	57 67	3.40	1.4/	7.31
2040	110-40-F	35 64	37.89	14.15	12.41	3.55	10 550	57.58	3.51	1.49	7.41
2042	110-24-F	36.24	37.37	13.62	12.77	3.73	10 602	57.50	3.50	1.49	7.39
2043	110-48-F	36.48	37.99	13.45	12.08	3.50	10 841	58.39	3.56	1.51	7.51
2044	110-56-F	36.25	37.32	13.11	13.32	3.56	10 594	57.00	3.51	1.49	7.41
2040	110-10-1	00.40	30.00	15.45	14.00	4.00	10 010	00.01	0.00	4.77	1.10
2072	110-40-F	37.21	37.81	12.87	12.11	4.28	10 857	57.75	4.27	2.10	6.62
2074	165-32-F	38.79	38.16	11.30	11 90	3.36	11 173	60.07	4.44	2.19	6.89
2075	55-32-F	38.85	37.98	12.93	10.24	3.59	11 074	59.79	4.42	2.18	6.86
2076	220-32-F	35.81	38.03	15.31	10.85	2.79	10 602	58.00	4.29	2.11	6.65
2077	110-24-F	37.94	38.04	12.78	11.24	3.64	11 019	59.05	4.37	2.10	6.73
2079	220-24-F	40.44	40.44	867	10.45	3.56	11 660	63.12	4.67	2.30	7.24
2080	110-16-F	36.71	40.66	12.99	9.64	3.32	11 178	60.45	4.47	2.20	6.93
2081	55-24-F	38.17	39.72	11.70	10.41	3.29	11 214	60.90	4.51	2.22	6.98
2082	165-40-F	37.92	39.95	11.89	10.24	3.27	11 125	60.90	4.51	2.22	6.74
2083	105-10-F	35.11	38.41	13.77	12.68	3.10	10 689	57 70	4.27	2.10	6.62
2085	55-40-F	37.53	39.04	12.52	10.91	3.13	11 042	59.95	4.44	2.18	6.87
2086	55-24-F	36.86	39.45	12.01	11.68	3.58	11 075	59.37	4.39	2.16	6.81
2087	110-16-F	36.77	39.43	11.70	12.10	3.68	10 836	59.20	4.38	2.15	6.43
2088	220-10-F	36.54	38.56	12.30	12.50	3.33	10 837	58.59	4.33	2.13	6.72
2092	165-32-F	37.35	37.83	14.40	10.42	3.02	10 802	58.90	4.36	2.14	6.75
2093	165-48-F	37.16	37.74	13.90	11.20	2.69	10 807	58.95	4.36	2.14	6.76
2094	110-56-F	36.92	37.68	14.20	11.20	3.41	10 662	58.11	4.30	2.11	6.76
2095	55-40-F	51.20	51.81	12.24	12.03	4.89	10 000	20.91	1.00	4.10	0.10
2097	55-32-F	and in					13 213		1		1
2098	55-48-F		1.1.1.1		132	1.2			E Se	Date:	
2090	110-24-F	36.99	39.90	11.91	11.20	3.51	11 094	59.90	4.43	2.18	6.87
2091	165-32-F	37.15	38.87	13.28	10.70	3.99	10 965	58.80	4.35	2.14	1 6.74

TABLE 19.

CALORIFIC VALUE OF COAL AND CINDERS, ANALYSIS OF FRONT-END GASES.

		0	alorific Va	alue, B.	t.u. per	lb.	Analy	Gases		
Test No.	Laboratory Designation	Dry Coal	Combust- ible	Front- end Cinders	Stack Cinders	Ash	Oxy- gen O ₂	Carbon Mon- oxide CO	Carbon Di- oxide CO ₂	Nitro- gen N ₂
	CodeItem	458	459	461	462	463	466	467	468	469
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2026 2027 2028 2028 2028 2029	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 193-22-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-24-F\\ 83-16-F\\ 83-24-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 155-24-F\\ 110-16-F\\ 110-24-F\\ 55-32-F\\ 110-32-F\\ 165-24-F\\ \end{array}$	$\begin{array}{c} 12\ 553\\ 12\ 433\\ 12\ 280\\ 12\ 282\\ 12\ 184\\ 12\ 307\\ 11\ 992\\ 12\ 422\\ 12\ 523\ 523\\ 12\ 523\ 523\ 523\ 523\ 523\ 523\ 523\ 52$	$\begin{array}{c} 14 \ 360 \\ 14 \ 305 \\ 14 \ 306 \\ 14 \ 252 \\ 14 \ 306 \\ 14 \ 252 \\ 14 \ 306 \\ 14 \ 291 \\ 14 \ 304 \\ 14 \ 304 \\ 14 \ 304 \\ 14 \ 307 \\ 14 \ 308 \\ 14 \ 307 \\ 14 \ 4083 \\ 14 \ 541 \\ 14 \ 539 \\ 14 \ 539 \\ 14 \ 596 \\ 14 \ 591 \\ 14 \ 494 \\ \end{array}$	7796 5544 6242 5312 5611 2586 6104 4821 6155 6523 2342 6573 3907 73557 5657 7003 6996 7109 4841 7007	6685 8947 8042 8779 9704 9438 8359 6112 7515 8218 6850 7659 9492 10341 10341 6459 8311 8274 8311 8274 8314 9867	$\begin{array}{c} 5069\\ 4587\\ 4515\\ 5297\\ 4844\\ 5297\\ 4844\\ 4624\\ 3272\\ 6528\\ 5267\\ 3850\\ 4842\\ 4261\\ 4261\\ 4261\\ 4261\\ 4853\\ 4261\\ 853\\ 4082\\ 5429\\ 5618\\ \end{array}$	$\begin{array}{c} 10.9\\ 13.7\\ 13.7\\ 13.5\\ 11.4\\ 11.9\\ 12.1\\ 11.3\\ 11.0\\ 10.3\\ 10.7\\ 11.8\\ 11.8\\ 11.8\\ 6.6\\ 10.9\\ 11.6\\ 10.8\\ 10.4\\ 9.5\\ 8.9\end{array}$	0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.1 6.0 5.7 6.0 7.4 7.3 7.1 8.0 8.3 8.7 7.7 8.0 8.3 8.7 7.7 8.0 11.2 8.0 7.7 8.1 8.1 9.4 9.4	81.0 80.3 80.7 80.6 81.1 80.8 80.7 80.5 80.6 80.6 80.6 80.6 80.6 80.5 80.2 82.2 81.1 80.7 81.1 81.5 81.4
2031 2032 2033 2034 2035 2037	83-40-F 165-32-F 110-48-F 193-40-F 110-40-F 165-40-F	11 989 12 242 12 243 11 835 12 329 12 441	$14 494 \\ 14 096 \\ 14 386 \\ 14 331 \\ 14 139 \\ 14 359 \\ 14 479 \\ 1$	2985 7539 2798 6172 5839 6543	9677 4922 9888 10324 9698 10098	4262 6021 4685 5327 5547 5942	8.2 7.6 7.0 8.5 6.0	0.0 0.2 0.0 0.0 0.0 0.0	9.8 10.2 10.4 8.3 10.8	81.8 82.2 82.6 83.2 83.2 83.2
2038 2039 2040 2041 2042 2043 2044 2044	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	$\begin{array}{c} 11 \ 442 \\ 11 \ 734 \\ 12 \ 164 \\ 12 \ 276 \\ 12 \ 273 \\ 12 \ 523 \\ 12 \ 192 \\ 11 \ 885 \end{array}$	14 134 14 098 14 389 14 348 14 403 14 558 14 400 14 302	6650 6127 4986 6656 6850 1512 3755 7518	$5772 \\ 8557 \\ 10227 \\ 9634 \\ 8425 \\ 10046 \\ 10654 \\ 6890 \\ \end{bmatrix}$	6168 4341 5659 5122 5361 4840 4400 4862	10.0 8.1 6.7 8.1 9.3 7.0 5.5 11.5	0.0 0.0 0.1 0.1 0.0 0.4 0.4 0.0	8.4 10.2 11.5 10.5 9.7 11.7 11.1 7.3	81.6 81.7 81.3 81.0 80.9 83.0 81.2
2072 2073 2075 2076 2077 2078 2080 2081 2082 2083 2084 2085 2085 2086 2087 2088 2089 2092 2092 2092 2093 2094 2095 2097 2098	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 55-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 165-24-F\\ 165-24-F\\ 165-16-F\\ 10-48-F\\ 165-40-F\\ 165-16-F\\ 110-48-F\\ 110-46-F\\ 220-16-F\\ 220-16-F\\ 220-40-F\\ 165-32-F\\ 165-48-F\\ 110-5-48-F\\ 55-40-F\\ 55-32-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 12 \ 460\\ 12 \ 751\\ 12 \ 575\\ 12 \ 575\\ 12 \ 579\\ 12 \ 519\\ 12 \ 539\\ 12 \ 519\\ 12 \ 539\\ 12 \ 519\\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\ 12 \ 539\$	$\begin{array}{c} 14\ 472\\ 14\ 480\\ 14\ 520\\ 14\ 414\\ 14\ 358\\ 14\ 502\\ 14\ 416\\ 14\ 416\\ 14\ 448\\ 14\ 398\\ 14\ 398\\ 14\ 531\\ 14\ 531\\ 14\ 408\\ 14\ 421\\ 14\ 513\\ 14\ 220\\ 14\ 418\\ 14\ 421\\ 14\ 513\\ 14\ 220\\ 14\ 431\\ 14\ 368\\ 14\ 429\\ 14\ 385\\ 14\ 385\\ \end{array}$	$\begin{array}{c} 4659\\ 4934\\ 5873\\ 6273\\ 6231\\ 8064\\ 6129\\ 6337\\ 5995\\ 6573\\ 7740\\ 3244\\ 7364\\ 7364\\ 7364\\ 5656\\ 2770\\ 5926\\ 5628\\ 6159\\ 8983\\ \end{array}$	9926 9485 9780 6914 11014 8289 9454 9867 5522 6097 10548 9157 10655 9496 5777 6711 84566 10926 10165 10295 10047 8508	$\begin{array}{c} 3920\\ 5216\\ 4331\\ 4450\\ 4871\\ 87618\\ 4168\\ 5587\\ 4451\\ 4497\\ 5126\\ 4497\\ 5126\\ 4497\\ 4792\\ 5126\\ 4495\\ 4393\\ 4182\\ 3691\\ 5522\\ 3691\\ 5522\\ 4670\\ \end{array}$	$\begin{array}{c} 7.4\\ 7.7\\ 7.4\\ 10.7\\ 6.8\\ 9.1\\ 9.2\\ 8.1\\ 10.7\\ 11.5\\ 6.3\\ 9.5\\ 7.0\\ 9.4\\ 11.0\\ 10.1\\ 8.7\\ 4.3\\ 6.0\\ 4.7\\ 0.4\end{array}$	0.3 0.1 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 10.4\\ 9.8\\ 10.3\\ 8.0\\ 9.2\\ 9.1\\ 9.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 8.1\\ 8.6\\ 9.6\\ 12.2\\ 11.5\\ 12.4\\ 11.8\\ 9.7\\ \end{array}$	81.9 82.4 81.8 81.2 82.0 81.7 82.0 81.2 81.2 81.3 83.1 83.1 83.1 83.1 83.1 83.1 83.1
2090 2091	110-24-F 165-32-F	12 594 12 626	14 429 14 423	7406	8440 9831	5118	8.9 7.2	0.1	9.8	81.3 82.3

TABLE 20.

-	1 7 2 3			Water	5			
Test No.	Laboratory Designation	Delivered to Boiler by Injectors, lb.	Weight of Water in Boiler at Start of Test Minus Weight in Boiler at Close of Test, Ib.	Correction for Change of Water Level and Steam Pressure in Boiler, Start to Close, Ib.	Loss From Boiler, Ib.	Loss From Boiler Oor- rected, Ib.	Pre- sumably Evapo- rated, Ib.	Drawbar Pull, lb.
	Code Item &	476	477	478	479	480	481	487
2009 2010 2012 2013 2014 2015 2016 2017 2021 2022 2023 2024 2022 2023 2024 2027 2028 2029 2030 2030 2032 2033 2034 2033	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-32-F\\ 138-32-F\\ 193-32-F\\ 193-16-F\\ 83-24-F\\ 83-32-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 55-32-F\\ 110-24-F\\ 55-32-F\\ 110-32-F\\ 165-32-F\\ 165-32-F\\ 110-48-F\\ 165-32-F\\ 110-40-F\\ 110-40$	$\begin{array}{r} 45 \ 314 \\ 28 \ 122 \\ 43 \ 727 \\ 43 \ 335 \\ 38 \ 210 \\ 41 \ 286 \\ 48 \ 824 \\ 47 \ 725 \\ 48 \ 834 \\ 47 \ 725 \\ 48 \ 834 \\ 435 \ 196 \\ 28 \ 176 \\ 28 \ 176 \\ 35 \ 634 \\ 52 \ 496 \\ 39 \ 512 \\ 40 \ 044 \\ 43 \ 818 \\ 41 \ 688 \\ 41 \ 688 \\ 42 \ 984 \\ 42 \ 984 \\ 42 \ 984 \\ 83 \ 8656 \\ 38 \ 656 \\ 10 \ 100 \ 100 \\ 100 \ 100 \ 100 \\ 100 \ 100 \ 100 \ 100 $	$\begin{array}{c} +294\\ +142\\ +47\\ +317\\ -185\\ +140\\ -94\\ -182\\ -279\\ -313\\ +94\\ -50\\ 0\\ +141\\ -144\\ +49\\ +47\\ +51\\ +250\\ +47\\ +51\\ +2250\\ +49\\ +144\\ +203\\ +193\\ +288\\ -659\end{array}$	$\begin{array}{c} +122\\ +147\\ +34\\ +277\\ -114\\ +136\\ -76\\ -149\\ -184\\ +224\\ +104\\ -244\\ +104\\ -44\\ -44\\ +165\\ -111\\ +165\\ +165\\ +179\\ +37\\ +179\\ +138\\ +137\\ +179\\ +186\\ +152\\ -471\end{array}$			45 436 28 269 43 761 43 612 38 096 41 422 48 514 44 339 47 542 48 610 28 132 43 741 52 799 30 355 35 677 52 556 39 549 40 223 43 876 22 43 876 20 622 43 704 20 622 43 842 38 842 38 842	10 140 12 772 8 823 6 469 4 320 9 222 13 215 17 522 13 072 8 931 17 292 15 911 14 528 7 839 11 903 20 048 8 852 20 947 11 343 18 946 10 009 17 426
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F 110-16-F	27 068 41 779 37 933 39 277 45 085 44 973 43 838 37 376	$\begin{array}{r} -203 \\ + 51 \\ +152 \\ -152 \\ + 50 \\ +355 \\ +101 \\ - 51 \end{array}$	-129 + 87 + 197 - 5 - 7 + 341 + 260 - 37			26 939 41 886 38 130 39 272 45 078 45 314 44 098 37 339	14 998 15 477 13 869 18 895 12 680 21 800 23 666 8 212
2072 2073 2074 2075 2076 2077 2078 2089 2081 2082 2083 2084 2085 2086 2087 2088 2089 2099 2093 2093 2094 2095 2095 2097 2099	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 100-82-F\\ 100-82-F\\ 110-16-F\\ 100-16-F\\ 100-16-F\\ 100-48-F\\ 100-48-F\\ 100-48-F\\ 100-48-F\\ 100-48-F\\ 100-48-F\\ 100-48-F\\ 100-6F\\ 100-48-F\\ 100-6F\\ 100-6$	$\begin{array}{c} 33 \ 886\\ 37 \ 169\\ 34 \ 914\\ 38 \ 781\\ 23 \ 011\\ 40 \ 308\\ 33 \ 546\\ 32 \ 074\\ 37 \ 696\\ 35 \ 815\\ 34 \ 198\\ 36 \ 739\\ 22 \ 266\\ 41 \ 387\\ 40 \ 553\\ 43 \ 865\\ 37 \ 413\\ 87 \ 43 \ 865\\ 37 \ 413\\ 28 \ 808\\ 23 \ 767\\ 18 \ 810\\ 23 \ 813\\ 31 \ 887\\ 33 \ 084\\ 20 \ 353\\ \end{array}$	$\begin{array}{c} 0\\ +260\\ -156\\ -153\\ -106\\ -102\\ -253\\ 0\\ 0\\ -253\\ 0\\ 0\\ -50\\ +260\\ +51\\ -102\\ +360\\ +675\\ +51\\ 0\\ -102\\ +360\\ +675\\ +51\\ 0\\ -102\\ +197\\ +50\end{array}$	$\begin{array}{r} + 24 \\ + 203 \\ - 18 \\ - 111 \\ - 109 \\ - 98 \\ - 225 \\ - 98 \\ - 225 \\ - 10 \\ 0 \\ + 34 \\ - 36 \\ + 177 \\ + 72 \\ + 46 \\ - 79 \\ + 18 \\ + 72 \\ + 441 \\ + 88 \\ - 8 \\ - 85 \\ + 140 \\ + 62 \end{array}$			33 910 37 372 34 896 38 670 22 902 40 263 33 448 37 686 35 815 34 232 36 703 32 443 41 459 40 599 40 599 40 599 43 286 37 431 26 776 29 055 24 208 37 431 26 776 29 055 24 208 31 898 23 805 31 832 23 805 31 832 33 224 20 000 20 00000000	20 877 16 961 13 486 20 483 10 396 12 512 10 188 8 270 14 783 7 078 22 403 24 833 15 532 8 135 5 568 11 831 13 701 17 660 25 225 28 922 24 980 20 820 29 240
2090 2091	110-24-F 165-32-F	21 688 16 786	0 - 51	- 19			21 688 16 767	11 477 12 024

WATER AND DRAWBAR PULL.

TABLE 21.

EVENTS OF STROKE FROM INDICATOR CARDS-CUT-OFF AND RELEASE.

		Cut	; Off, Pe	er cent of Stroke			Release, Per cent of Stroke				
Test	Laboratory	Diaha	Q:J.	Tell	014.		Diah	4 0:2-	T .ft	0:2.	
No.	Designation	Right	Side	Lien	Side	Aver-	Righ	t Slue	Leit	Side	Aver-
		Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	age
	Code Item 25	495	496	497	498	499	510	511	512	513	514
2009	138-16-F	14.0	19.0	17.4	17.8	17.1	51.1	57.4	54.0	597	55.6
2010	193-20-F	20.1	20.6	18.0	18.0	19.2	55.4	62.3	61.0	61.9	60.2
2012	138-24-F	24.4	22.7	22.4	23.8	23.3	63.9	66.9	63.7	65.9	65.1
2013	138-32-F	29.6	33.5	30.5	29.7	30.8	67.1	69.6	67.8	70.8	68.8
2014	193-32-F	33.4	33.1	29.0	30.1	31.4	67.0	71.2	67.3	68.0	68.4
2015	193-24-F	22.2	24.0	21.8	22.9	22.7	61.1	64.9	59.1	65.8	62.7
2016	193-16-F	16.1	17.6	14.2	17.8	16.4	53.6	60.8	55.9	60.5	57.7
2017	83-16-F	15.0	17.1	10.3	19.2	10.9	49.9	50.4	52.4	57.5	54.1
2018	83-24-F	20.7	22.9	24.1	23.9	22.0	676	66 7	09.0	65.9	59.8
2020	83-34-F	18 3	25.5	214	24 4	224	571	62.6	60.4	61.8	60.5
2021	83-16-F	12.3	15.2	14.3	17.6	14.9	48.9	54.3	50.9	54.6	52.2
2022	83-32-F	27.0	31.7	28.0	34.5	30.3	62.9	66.8	66.0	70.4	66.5
2023	138-40-F	34.0	43.1	39.3	41.2	39.4	72.1	74.5	73.2	74.9	73.7
2024	55-24-F										
2026	110-16-F	15.2	24.3	18.1	18.7	19.1	52.6	55.5	56.1	59.3	55.9
2027	110-24-F	22.0	25.4	22.6	27.0	24.3	62.3	64.5	63.8	66.9	64.4
2028	55-32-F	28.6	32.1	31.4	34.8	31.7	65.6	66.7	68.9	69.9	67.8
2029	110-32-F	28.3	30.9	30.0	33.7	30.7	57 9	70.1 65.0	68.3	64.9	62.0
2030	105-24-F	35.0	40.4	20.0	40.4 12 A	20.4	716	72.0	73.0	72 0	72 3
2031	165-32-F	28.5	31.4	27.9	33.0	30.2	65 1	71 1	70.8	72.9	70.0
2033	110-48-F	37.7	40.4	40.8	43.8	40.7	73.9	76.4	75.3	74.9	75.1
2034	193-40-F	38.3	44.9	39.1	43.4	41.4	77.0	78.2	78.3	79.3	78.2
2035	110-40-F	36.3	39.6	41.8	41.9	39.9	73.7	75.0	76.4	75.6	75.2
2037	165-40-F	38.9	41.6	36.7	43.0	40.1	74.5	75.3	75.7	77.2	75.7
								1			
2038	55-24-F	000	24.0	01.0	00.4	00 5	GE O	70 7	000	70.0	000
2039	110-32-F	49.9	34.9	31.0	33.4	32.5	75 9	70.7	08.8	70.3	08.9
2040	100-40-F	30.6	42.2	41.9	41.4	41.0	73.6	76.0	75.9	75.5	75.5
2042	110-24-F	23.6	23.5	27.9	24.3	24.8	59.5	62.8	63.5	63.8	62.4
2043	110-48-F	47.6	49.6	48.0	48.7	48.5	79.5	79.3	83.0	79.5	80.3
2044	110-56-F	56.2	56.9	60.5	56.5	57.5	81.6	82.2	86.3	81.2	71.8
2045	110-16-F	18.4	16.8	23.5	18.2	19.2	52.0	55.5	56.5	55.6	54.9
2072	110-40-17	41.5	41.5	41.8	41.0	41.5	75 1	749	75.0	TEC	75 1
2073	110-32-F	25.6	20.8	31.6	31 5	296	79 4	68 5	70.4	60.8	70.5
2074	165-32-F	20.3	32 7	32.5	29.7	28.8	67 7	70.8	72.3	69.5	70.1
2075	55-32-F	29.9	33.9	33.7	31.0	32.1	66.7	68.5	70.5	69.2	68.7
2076	220-32-F	29.3	33.3	31.4	34.9	32.2	68.3	68.1	63.2	67.3	66.7
2077	110-24-F	21.5	24.4	25.5	24.4	24.0	56.1	61.7	63.0	63.1	61.0
2078	165-24-F	22.0	24.7	26.6	22.8	24.0	58.9	64.6	64.5	65.4	63.4
2079	220-24-F	24.1	23.6	22.7	23.1	23.4	69.7	67.3	66.8	63.5	66.8
2080	110-10-F	15.5	10.0	18.9	10.8	10.9	50.0	53.0	61.0	59.3	56.0
2001	165 40 F	26.0	44.0	41 0	42.4	41.1	74.9	79.0	76.0	01.8	00.5
2083	165-16-F	16.2	18.2	21.8	174	18.4	51 4	57 5	60.8	587	57 1
2084	110-48-F	47.9	49.9	48.9	47.0	48.4	79.2	79.8	80.9	78.4	79.6
2085	55-40-F	39.7	42.0	43.3	40.2	41.3	70.3	74.4	77.6	74.6	74.2
2086	55-24-F	22.0	23.8	25.7	22.0	23.4	58.5	61.3	63.2	62.3	61.3
2087	110-16-F	15.9	15.7	17.4	17.4	16.6	49.3	54.0	56.5	54.2	53.5
2088	220-16-F	16.4	16.9	14.9	15.3	15.9	59.3	58.7	57.4	56.3	57.9
2089	220-40-F	41.2	45.4	42.0	45.4	43.5	74.5	77.8	78.4	77.4	77.0
2092	165-32-F	30.1	31.1	30.8	29.5	30.4	70.0	70.2	70.8	70.3	70.3
2093	105-48-F	40.9	56.2	40.4	49.1	40.0	82 1	84.5	96.0	00 F	94.2
2094	55-48-F	47.8	50.0	51.5	475	49.2	80.0	79.8	81.8	79.6	80.2
2096	55-40-F	38.1	41.3	43.2	39.1	40.4	73.2	74.0	77.6	74.7	74.9
2097	55-32-F	30.6	33.2	35.0	30.5	32.3	66.4	69.4	71.0	69.0	69.0
2098	55-48-F	47.7	50.1	51.5	47.2	49.1	79.5	80.2	82.7	80.2	80.7
0.000	110 01 7	000	000	00 /	040	000	FO -	00 1	040	0.0	000
2090	110-24-F	20.9	22.3	23.4	24.6	22.8	50.5 68 F	70.5	04.2	04.2	62.8 70 F
2091	103-34-F.	41.0	04.0	41.0	40.0	40.0	00.0	10.5	11.0	1 11.9	10.5

TABLE 22.

EVENTS OF STROKE AND PRESSURE FROM INDICATOR CARDS-BEGINNING OF COMPRESSION AND INITIAL PRESSURE.

		Be	ginning Per ce	of Co nt of	mpressie Stroke	on,		Inilb	itial Pre	ssure, 1. in.	
Test No.	Laboratory Designation	Right	Side	Left	Side	A ver-	Righ	at Side	Lef	t Side	
		Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	age
	Code Item 17	525	526	527	528	529	540	541	542	543	544
2009	138-16-F	56.0	58.3	56.7	56.2	56.8	170.9	188.6	173.0	186.2	179.7
2010	193-20-F	57.5	66.8	71.1	59.7	63.8	150.5	159.6	144.5	162.6	154.3
2012	138-24-F	50.2	59.5	48.2	55.8	53.4	166.4	182.3	170.8	180.8	175.1
2013	193-32-F	47.4	58.7	80.8	59.1	73.4	156.4	154.3	166.8	173.1	170.9
2015	193-24-F	79.7	73.9	78.2	76.9	77.2	159.7	155.7	162.9	160.9	159.8
2016	193-16-F	64.0	71.2	68.5	67.2	67.7	156.1	163.6	150.1	165.1	158.7
2017	83-16-F	50.4	58.1	49.4	56.5	53.6	177.3	187.4	177.1	181.8	180.9
2019	83-32-F	38.2	20.8 42.4	35.8	37.6	38.5	178.3	178.6	176.5	178 7	178.0
2020	83-24-F	39.2	43.6	39.2	42.8	41.2	175.1	177.0	177.6	180.0	177.4
2021	83-16-F	46.2	51.5	46.1	51.6	48.9	182.9	182.9	181.8	185.5	183.3
2022	33-32-F	31.2	42.6	30.8	35.5	34.0	175.5	156.6	178.7	182.1	173.2
2024	55-24-F	00.1	55.0	00.0	04.0	00.0	100.1	110.0	109.9	110.0	1/4.0
2026	110-16-F	51.5	54.6	51.6	55.8	53.4	191.1	181.1	187.5	175.9	183.9
2027	110-24-F	44.9	47.6	44.6	44.8	45.5	185.4	174.5	189.2	176.2	181.3
2028	22-32-F	32.1	35.0	35.6	36.0	34.8	191.9	184.7	192.2	191.7	188.7
2030	165-24-F	43.6	63.4	48.3	53.6	52.2	161.3	171.9	167.4	179.7	170.1
2031	83-40-F	28.7	32.3	30.0	31.9	30.7	183.7	177.9	187.7	186.9	184.1
2032	165-32-F	42.1	48.4	77.5	68.3	59.1	185.8	166.2	162.6	166.0	170.2
2034	193-40-F	62.0	33.7	71.8	34.1	68 9	168 7	172.9	184.2	189.3	173 0
2035	110-40-F	33.5	36.7	30.0	33.1	33.3	178.7	172.9	183.3	187.7	180.7
2037	165-40-F	61.6	68.5	67.4	66.5	66.0	176.7	161.4	159.3	179.8	169.3
2038	55-24-F		1 m	L					100		
2039	110-32-F	41.2	46.3	40.0	39.8	41.8	175.0	194.2	181.8	189.6	185.2
2040	165-40-F	73.9	75.5	74.5	74.6	74.6	184.5	195.7	192.1	184.6	189.2
2041	110-40-F	34.5	37.3	36.2	32.8	35.2	175.5	186.1	179.6	183.1	181.1
2042	110-48-F	28.2	51.8	30.4	40.9	28.6	191 7	188 2	181.1	173.9	188 9
2044	110-56-F	23.8	23.3	25.7	22.4	23.8	180.1	190.8	191.4	187.4	187.4
2045	110-16-F	54.9	56.7	52.8	53.4	54.5	185.9	181.1	193.4	195.9	189.1
2072	110-40-F	30.5	307	31.3	29.3	30.5	183.8	187.4	185.5	186.7	185.9
2073	110-32-F	36.8	41.4	37.7	35.5	37.9	184.8	190.3	189.7	190.2	188.8
2074	165-32-F	43.3	43.0	41.2	44.2	42.9	178.9	173.7	178.1	173.9	176.2
2075	55-32-F	31.5 51.4	36.6	37.8	33.2	34.8	192.6	195.7	193.8	197.1	194.8
2077	110-24-F	48.6	47.2	48.5	47.1	47.9	185.5	193.9	190.8	191.1	190.3
2078	165-24-F	49.5	51.3	48.6	50.4	50.0	179.9	177.5	168.7	173.6	175.0
2079	220-24-F	52.2	54.7	52.3	53.5	53.2	185.1	166.4	179.6	186.1	179.3
2081	55-24-F	41.3	45.5	44.8	41.8	43.4	190.5	192.8	190.3	197.3	193.4
2082	165-40-F	33.2	36.4	34.0	33.0	34.2	191.9	170.6	163.6	171.6	174.4
2083	.165-16-F	51.6	59.7	48.5	54.3	53.5	169.8	182.1	173.9	176.9	175.7
2084	110-48-F	25.7	24.8	10.4	22.8	24.9	179.4	181.8	179.8	187.1	182.0
2086	55-24-F	39.2	41.7	39.8	37.4	39.2	192.7	192.1	189.4	193.4	192.5
2087	110-16-F	53.1	51.1	50.7	49.1	51.0	176.3	175.3	174.2	177.8	175.9
2088	220-16-F	54.9	52.5	52.1	52.4	53.0	136.4	.134.0	160.9	159.9	147.8
2089	165-32-F	39 1	41.5	39 9	41.2	43.0	163.2	172.5	162.7	171.8	167.6
2093	165-48-F	27.6	26.2	25.5	24.8	26.0	165.4	165.4	157.2	166.7	163.7
2094	110-56-F	19.5	17.7	20.7	15.5	18.4	172.4	171.3	170.6	178.9	173.3
2095	55-48-F	20.4	22.0	22.5	19.2	21.0	187.3	189.9	187.9	190.7	189.0
2097	55-32-F	30.4	33.6	34.3	29.9	32.1	192.9	191.9	192.4	192.4	192.4
2098	55-48-F	21.6	22.0	23.3	19.5	21.6	188.7	191.4	191.8	192.9	191.2
2000	110-24 1	44.4	46.1	41.4	49.6	136	194 7	179 4	171 9	173 4	175 4
2091	165-32-F	39.4	43.0	36.1	39.6	39.5	164.4	174.1	165.4	175.5	169.9
-											THE OWNER WATER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE

TABLE 23.

PRESSURE FROM INDICATOR CARDS-CUT-OFF AND RELEASE.

3 19		Pressure at Cut-Off, lb. per sq. in						n. Pressure at Release, lb. per sq. in.			
Test	Laboratory	Right	Side	Left	: Side	Aver-	Righ	t Side	Left	Side	Aver-
110.	Designation	Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	age
	CodeItem	566	567	568	569	570	581	582	583	584	585
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023	138-16-F 193-20-F 138-32-F 193-32-F 193-32-F 193-32-F 193-16-F 83-16-F 83-32-F 83-32-F 83-32-F 83-32-F 83-32-F 83-32-F 83-32-F	146.6 108.5 130.7 123.8 101.3 114.8 113.9 152.0 148.0 150.3 156.2 162.0 149.1 136.9	$\begin{array}{c} 129.7\\ 129.0\\ 138.0\\ 134.6\\ 123.5\\ 123.6\\ 133.0\\ 162.7\\ 157.7\\ 158.0\\ 147.3\\ 168.9\\ 129.2\\ 133.6 \end{array}$	$130.6 \\ 119.5 \\ 131.3 \\ 122.0 \\ 114.0 \\ 114.0 \\ 114.6 \\ 146.0 \\ 142.0 \\ 142.9 \\ 154.1 \\ 164.5 \\ 151.4 \\ 121.1 \\$	132.0 131.0 136.8 139.4 125.0 131.8 132.0 155.3 156.7 155.1 155.6 167.0 154.7 146.2	$134.7 \\ 122.0 \\ 134.2 \\ 130.0 \\ 116.0 \\ 121.1 \\ 123.4 \\ 154.0 \\ 151.1 \\ 152.3 \\ 153.3 \\ 165.6 \\ 146.1 \\ 134.5 \\ 134.5 \\ 122.0 \\ 122.0 \\ 134.5 \\ 122.0 \\ 134.5 \\ 122.0 \\ 122.$	44.0 40.5 52.9 49.3 42.8 38.8 51.7 57.9 58.9 58.9 58.9 58.0 51.1 65.6 65.7	45.7 45.5 54.0 64.9 57.8 49.4 41.3 55.5 60.5 75.0 61.6 56.3 66.0 76.8	46.4 39.5 48.4 55.3 48.2 47.2 34.8 52.6 59.1 66.6 60.8 52.6 70.2 66.3	42.8 43.5 53.4 63.3 57.0 49.1 42.2 54.5 66.4 79.6 66.4 79.6 66.4 61.7 77.7 81.3	$\begin{array}{r} 44.7\\ 42.8\\ 50.4\\ 59.1\\ 53.1\\ 47.1\\ 39.3\\ 53.6\\ 61.0\\ 70.0\\ 61.7\\ 56.7\\ 69.9\\ 72.5\end{array}$
2024 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2037	55-24-F 110-16-F 110-24-F 55-32-F 110-32-F 165-24-F 83-40-F 165-32-F 110-48-F 193-40-F 110-40-F 165-40-F	$145.6 \\139.7 \\154.9 \\135.3 \\122.0 \\149.0 \\126.2 \\139.7 \\111.5 \\139.5 \\117.9 \\$	$\begin{array}{c} 123.6\\ 146.8\\ 165.3\\ 150.7\\ 139.7\\ 150.5\\ 131.8\\ 146.0\\ 112.2\\ 141.4\\ 124.2 \end{array}$	$133.2 \\ 143.9 \\ 161.7 \\ 143.7 \\ 129.1 \\ 149.5 \\ 133.0 \\ 141.0 \\ 111.1 \\ 133.9 \\ 125.3 \\$	$151.6 \\ 144.3 \\ 167.3 \\ 154.5 \\ 136.4 \\ 154.6 \\ 134.7 \\ 145.6 \\ 123.4 \\ 148.2 \\ 132.$	$138.4 \\ 143.7 \\ 162.3 \\ 141.1 \\ 131.8 \\ 150.9 \\ 131.4 \\ 143.1 \\ 114.5 \\ 140.8 \\ 124.9 \\ 124.9 \\ 124.9 \\ 124.9 \\ 140.8 \\ 140.8 \\ 140.8 \\ 140.8 \\ 124.9 \\ 140.8 \\ 140.8 \\ 140.8 \\ 140.8 \\ 140.8 \\ 124.9 \\ 140.8 \\ 140.$	45.1 49.0 67.4 52.0 48.4 72.5 56.4 70.0 51.8 66.1 58.2	$54.7 \\58.1 \\80.1 \\67.9 \\56.1 \\80.5 \\62.5 \\75.3 \\62.1 \\74.7 \\69.5$	45.1 51.1 72.2 62.7 43.4 77.0 52.6 75.8 53.1 71.0 60.5	51.6 57.3 81.7 74.0 61.2 85.8 61.8 82.3 64.1 80.3 72.1	49.1 53.9 75.4 64.2 52.3 79.0 58.3 75.7 57.8 75.7 57.8 73.0 65.1
2038 2039 2040 2041 2042 2043 2044 2044	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	135.4 119.7 136.3 140.7 146.5 144.8 136.5	152.6 134.9 150.8 158.6 156.1 154.4 164.1	139.7 120.3 141.0 135.7 149.8 139.5 121.3	150.3 127.4 149.7 149.6 153.0 152.8 146.7	$146.8 \\ 125.6 \\ 144.5 \\ 146.2 \\ 151.4 \\ 147.9 \\ 142.2$	60.8 63.7 71.6 55.5 85.1 96.8 47.4	73.2 71.2 80.3 62.6 94.5 103.9 54.4	62.4 63.6 75.3 56.7 83.8 92.8 47.4	70.6 66.8 78.0 56.5 91.9 105.9 51.6	66.8 66.3 76.3 57.8 88.8 99.9 50.2
2072 2073 2074 2075 2076 2077 2082 2083 2084 2085 2084 2085 2086 2086 2088 2088 2088 2092 2092 2094 2095 2094 2095 2097 2098	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 220-24-F\\ 110-6-F\\ 155-24-F\\ 110-48-F\\ 165-40-F\\ 165-40-F\\ 165-48-F\\ 110-48-F\\ 10-48-F\\ 10-48-F\\ 165-32-F\\ 10-6-F\\ 220-40-F\\ 10-6-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 165-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 139.2\\ 155.4\\ 153.4\\ 166.3\\ 116.7\\ 142.3\\ 135.2\\ 112.9\\ 147.9\\ 163.2\\ 139.3\\ 139.3\\ 139.1\\ 162.1\\ 167.3\\ 145.9\\ 99.6\\ 107.3\\ 128.5\\ 128.5\\ 128.5\\ 128.5\\ 128.5\\ 148.6\\ 170.2\\ 169.9\\ 165.4\\ 168.9 \end{array}$	$\begin{array}{c} 149.1\\ 157.7\\ 135.2\\ 167.0\\ 117.4\\ 148.9\\ 139.0\\ 121.6\\ 161.2\\ 169.9\\ 124.3\\ 142.1\\ 147.6\\ 169.1\\ 124.3\\ 142.1\\ 173.7\\ 164.8\\ 108.0\\ 112.0\\ 138.9\\ 131.7\\ 154.6\\ 170.6\\ 171.4\\ 176.5\\ \end{array}$	$\begin{array}{c} 145.2\\ 149.4\\ 129.1\\ 166.1\\ 113.2\\ 142.3\\ 125.8\\ 124.3\\ 146.3\\ 123.6\\ 123.6\\ 123.6\\ 129.1\\ 145.8\\ 164.4\\ 167.2\\ 152.6\\ 126.6\\ 126.6\\ 107.8\\ 132.7\\ 152.2\\ 144.9\\ 169.3\\ 168.2\\ 165.9\\ 171.9\\ 171.9\end{array}$	$\begin{array}{c} 149.4\\ 148.1\\ 139.7\\ 163.8\\ 116.2\\ 145.7\\ 145.7\\ 145.9\\ 119.9\\ 148.8\\ 170.6\\ 124.8\\ 132.7\\ 149.1\\ 165.0\\ 175.4\\ 108.2\\ 139.8\\ 129.8\\ 129.8\\ 129.8\\ 129.8\\ 129.8\\ 129.8\\ 156.4\\ 171.8\\ 172.9\\ 175.5\\ \end{array}$	$\begin{array}{c} 145.7\\ 152.7\\ 139.4\\ 165.8\\ 115.9\\ 114.8\\ 134.0\\ 119.7\\ 151.1\\ 167.1\\ 126.8\\ 135.8\\ 145.4\\ 165.2\\ 170.9\\ 152.8\\ 116.2\\ 170.9\\ 129.3\\ 116.2\\ 108.8\\ 134.9\\ 129.3\\ 151.1\\ 170.4\\ 170.4\\ 168.9\\ 173.2 \end{array}$	$\begin{array}{c} 73.1\\ 51.6\\ 56.8\\ 77.1\\ 51.1\\ 51.7\\ 36.0\\ 48.9\\ 64.1\\ 46.2\\ 83.8\\ 91.4\\ 650.9\\ 25.5\\ 57.7\\ 52.4\\ 73.9\\ 98.9\\ 101.0\\ 90.8\\ 81.2\\ 100.5 \end{array}$	$\begin{array}{c} 80.9\\ 70.9\\ 63.5\\ 59.5\\ 59.5\\ 56.0\\ 47.3\\ 54.1\\ 70.5\\ 74.3\\ 47.0\\ 88.6\\ 90.5\\ 68.2\\ 54.1\\ 68.6\\ 82.5\\ 92.5\\ 92.5\\ 9102.7\\ 93.4\\ 81.0\\ 105.2 \end{array}$	$\begin{array}{c} 79.4\\ 68.1\\ 56.2\\ 79.8\\ 55.5\\ 57.1\\ 50.5\\ 44.5.2\\ 72.0\\ 64.3\\ 85.6\\ 72.0\\ 49.6\\ 72.0\\ 72.0\\ 49.6\\ 72.0\\ 75.4\\ 99.6\\ 72.0\\ 75.4\\ 99.6\\ 72.0\\ 75.4\\ 99.6\\ 72.0\\ 75.4\\ 99.6\\ 72.0\\ 99.6\\ 75.4\\ 99.6\\ 72.0\\ 99.6\\ 75.4\\ 99.6\\ 72.0\\ 99.6\\ 75.4\\ 99.6\\ 72.0\\ 99.6\\ 75.4\\ 99.6\\ 99.$	$\begin{array}{c} 79.7\\ 67.1\\ 62.4\\ 75.4\\ 57.5\\ 58.4\\ 51.1\\ 43.7\\ 43.3\\ 65.1\\ 68.6\\ 87.1\\ 85.3\\ 65.8\\ 51.6\\ 87.1\\ 85.3\\ 65.8\\ 51.6\\ 59.3\\ 81.7\\ 102.8\\ 81.7\\ 102.8\\ 81.7\\ 102.8\\ 89.9\\ 101.2\\ 89.9\\ 78.2\\ 100.6 \end{array}$	78.3 64.2 59.7 78.1 55.7 58.1 52.3 42.9 47.9 69.1 68.3 84.5 86.3 89.5 68.2 51.4 31.9 59.0 78.4 959.0 78.4 9102.5 9102.5 91.7 80.9 103.1
2090 2091	110-24-F 165-32-F	145.1 133.8	155.8 129.8	151.2 143.4	143.4 147.9	148.9 138.7	55.8	53.4 63.9	54.4 56.7	55.0 58.8	54.7 58.4
TABLE 24.

PRESSURE FROM INDICATOR CARDS-BEGINNING OF COMPRESSION AND LEAST BACK PRESSURE.

		Pres p	sure at ression,	Begins lb. p	ning of er sq. in	Com- n.	Least Back Pressure, lb. per sq. in.				
Test No.	Laboratory	Right	Side	Left	Side	Arrow	Righ	nt Side	Left	Side	
		Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	Aver- age
	CodeItem	596	597	598	599	600	611	612	613	614	615
2009 2010	138-16-F 193-20-F	7.2 10.4	9.3 11.5	10.9 9.0	9.1 13.3	9.1 11.1	3.9	3.8 7.6	7.0 9.0	6.4 9.0	5.3 8.2
2012	138-24-F	11.5	12.2	16.4	10.4	12.0	9.8	12.7	7.8	8.2	7.7
2014	193-32-F	15.8	17.5	16.8	17.3	16.9	15.4	17.9	16.6	18.3	17.1
2015	193-24-F	11.6	13.0	10.5	13.3	12.9	10.2	13.5	11.3	13.4	12.1
2017	83-16-F	2.8	4.6	4.1	3.1	3.7	2.7	2.1	2.4	3.2	0.4
2018	83-24-F	4.5	6.6	5.9	4.8	5.5	4.6	3.4	3.1	4.7	4.0
2019	83-32-F	7.1	10.6	9.1	8.0	8.7	4.5	5.6	5.1	5.4	5.2
2021	83-16-F	4.0	5.9	8.8	5.1	6.0	0.0	2.2	6.1	5.3	4.4
2022	83-32-F	6.7	9.4	13.3	11.2	10.2	4.1	7.2	8.2	9.4	7.2
2023	138-40-F 55-24-F	44.4	41.0	20.2	28.4	20.0	17.1	10.0	20.0	22.3	19.5
2026	110-16-F	5.8	8.1	9.6	5.7	7.3	2.3	2.8	4.1	3.2	3.1
2027	110-24-F	8.2	11.3	11.0	9.4	10.0	4.7	5.9	6.3	7.4	6.1
2029	110-32-F	8.2	12.7	16.5	16.0	13.4	8.1	10.4	10.0	13.6	10.5
2030	165-24-F	13.4	13.7	16.6	20.6	16.1	10.5	12.1	9.0	14.2	11.5
2031	83-40-F	10.5	20.0	14.4	13.4	12.5	9.6	10.0	10.6	10.8	10.3
2033	110-48-F	15.4	19.9	21.4	18.8	18.9	13.8	15.3	16.9	14.6	15.2
2034	193-40-F	21.6	23.8	24.7	26.7	24.2	22.8	24.0	24.1	25.6	24.1
2035	165-40-F	21.1	22.8	22.1	25.1	22.8	21.8	23.4	22.5	24.7	14.7
	TT OI T										
2038	55-24-F	12.6	16.8	15.8	14.4	14.9	85	11.5	84	11.1	9.9
2040	165-40-F	24.4	24.8	23.8	23.5	24.1	22.5	24.8	22.9	24.7	23.7
2041	110-40-F	18.5	21.1	21.4	18.0	19.8	12.4	16.0	14.0	15.3	14.4
2042	110-48-F	23.0	26.8	26.8	25.1	25.4	5.0	22.0	20.0	21.4	20.5
2044	110-56-F	27.9	30.6	29.9	28.7	29.3	22.5	24.9	22.9	22.4	23.2
2045	110-16-F	5.9	7.2	7.6	7.1	7.0	3.0	3.8	3.1	3.3	3.3
2072	110-40-F	12.8	15.1	14.9	13.7	14.1	8.3	10.1	8.9	10.0	9.3
2073	110-32-F	9.1	10.9	11.6	10.0	10.4	5.9	7.1	5.6	7.2	6.5
2074	55-32-F	4.1	3.1	20.5	2.4	2.9	2.2	1.9	1.2	1.6	12.5
2076	220-32-F	18.3	21.9	21.5	22.5	21.1	14.5	17.9	14.0	16.9	15.8
2077	110-24-F	10.3	8.5	6.6	6.5	6.8 12.3	3.0	3.4	2.8	3.5	3.2
2079	220-24-F	12.3	15.9	15.7	15.3	14.8	8.3	12.0	8.2	10.7	9.8
2080	110-16-F	4.3	5.6	5.6	4.5	5.0	2.0	2.1	2.0	2.0	2.0
2081	165-40-F	21.6	24.4	26.6	25.1	24.4	17.2	20.0	17.7	18.2	18.3
2083	165-16-F	7.7	8.9	11.5	9.1	9.3	3.3	4.9	3.3	4.2	3.9
2084	110-48-F	15.4	17.9	18.4	17.0	17.2	12.6	13.3	10.0	13.0	12.2
2086	55-24-F	2.7	2.3	4.2	2.8	2.5	1.6	0.4	0.0	0.5	0.6
2087	110-16-F	4.1	6.2	6.0	4.9	5.3	2.2	2.2	2.2	2.7	2.3
2088	220-16-F	7.5	9.4	10.4	297	9.6	4.8	7.5	3.4	23.0	5.1
2092	165-32-F	15.5	18.0	18.3	17.2	17.3	9.6	14.0	10.8	12.0	11.6
2093	165-48-F	28.7	29.9	31.7	29.5	30.0	20.4	24.0	21.1	23.0	22.1
2094	55-48-F	5.2	4.1	4.2	4.2	4.4	2.3	1.7	10.3	2.0	1.8
2096	55-40-F	6.2		4.2	3.8		2.8	1.0	1.4	1.5	1.7
2097	55-32-F	5.4	3.0	3.8	3.6	4.0	3.1	1.9	2.1	1.2	2.1
			2.0	0.1							
2090	110-24-F 165-32-F	8.7	11.5	11.3	10.0 23.4	10.4 24.0	5.4	6.0	5.0	5.4 16.4	5.5 15.6
-											

TABLE 25.

BOILER PERFORMANCE-COAL AND EVAPORATION.

		Dry	Coal		Eva	poration			Steam		
		- Inec	., 10.		D	ry Stean	n, lb.		Used at Calor-	Dry Steam	
Test No.	Laboratory Designation	Per Hour	Per Hour per sq. ft. of Grate Surface	Moist Steam per Hour, Ib.	Per Hour	Per Hour per sq. ft. of Heating Surface	Per lb. of Dry Coal	Per lb. of Coal as Fired	imeter, Safety Valve, Leaks etc., lb.	to Engine per Hour, lb.	Factor of Evap- oration
1.13	Code Item	626	627	633	634	635	636	637	638	639	641
2009 2010 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023 2022 2022 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-32-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-32-F\\ 83-24-F\\ 110-16-F\\ 110-24-F\\ 110-24-F\\ 110-32-F\\ 110-32-F\\ 165-32-F\\ 110-32-F\\ 165-32-F\\ 110-48-F\\ 193-40-F\\ 110-48-F\\ 110-4$	$\begin{array}{c} 2647\\ 3834\\ 3707\\ 4749\\ 6199\\ 4927\\ 2537\\ 3255\\ 2472\\ 2211\\ 3673\\ 2472\\ 2211\\ 3673\\ 2293\\ 3256\\ 2406\\ 4242\\ 4013\\ 2293\\ 3256\\ 4242\\ 4013\\ 5352\\ 5126\\ 67767\\ 7567$	$\begin{array}{c} 53.4\\ 77.4\\ 77.8\\ 95.8\\ 125.1\\ 99.5\\ 65.7\\ 39.5\\ 51.2\\ 64.9\\ 94.6\\ 74.1\\ 135.0\\ 36.6\\ 85.6\\ 85.6\\ 85.6\\ 81.0\\ 85.6\\ 81.0\\ 108.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\ 103.5\\ 156.8\\ 108.0\\$	$\begin{array}{r} 18 & 174 \\ 23 & 887 \\ 23 & 869 \\ 29 & 076 \\ 32 & 648 \\ 27 & 617 \\ 20 & 792 \\ 14 & 778 \\ 17 & 828 \\ 22 & 429 \\ 17 & 650 \\ 14 & 066 \\ 21 & 871 \\ 13 \\ 5 & 199 \\ 15 & 178 \\ 16 & 461 \\ 21 & 022 \\ 16 & 950 \\ 26 & 815 \\ 26 & 826 \\ 27 & 804 \\ 30 & 938 \\ 32 & 341 \\ 38 & 258 \\ 441 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451 \\ 38 & 258 \\ 451$	$\begin{array}{c} 18 & 027 \\ 23 & 668 \\ 23 & 674 \\ 28 & 751 \\ 32 & 272 \\ 27 & 363 \\ 20 & 623 \\ 14 & 683 \\ 17 & 737 \\ 22 & 288 \\ 17 & 560 \\ 14 & 011 \\ 21 & 801 \\ 13 & 5 & 025 \\ 15 & 123 \\ 16 & 341 \\ 20 & 892 \\ 15 & 123 \\ 16 & 841 \\ 26 & 629 \\ 27 & 598 \\ 30 & 627 \\ 598 \\ 30 & 627 \\ 598 \\ 30 & 627 \\ 32 & 308 \\ 8445 \\ 398 \\ 856 \\ 647 \\ 598 \\ 30 & 627 \\ 32 & 838 \\ 856 \\ 647 \\ 598 \\ 30 & 627 \\ 32 & 838 \\ 856 \\ 647 \\ 598 \\ 856 \\ 8445 \\ 888 \\ 856 \\ 845 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 \\ 856 \\ 888 $	$\begin{array}{c} 5.49\\ 7.21\\ 8.76\\ 9.83\\ 8.33\\ 6.28\\ 4.47\\ 5.40\\ 6.79\\ 5.35\\ 4.27\\ 6.64\\ 10.67\\ 4.61\\ 4.98\\ 6.36\\ 5.13\\ 8.11\\ 7.96\\ 8.41\\ 9.33\\ 9.76\\ 11.71\\ 10.01\\ \end{array}$	$\begin{array}{c} 6.80\\ 6.17\\ 6.05\\ 5.21\\ 5.521\\ 5.521\\ 6.34\\ 7.50\\ 6.98\\ 7.10\\ 6.98\\ 7.10\\ 6.34\\ 5.24\\ 8.34\\ 7.13\\ 6.42\\ 7.00\\ 6.25\\ 6.50\\ 5.70\\ 6.25\\ 4.95\\ 5.90\\ 5.72\\ 4.95\\ 5.90\\ 5.9$	$\begin{array}{c} 6.01\\ 5.467\\ 5.51\\ 4.725\\ 5.59\\ 6.23\\ 6.20\\ 6.48\\ 5.522\\ 4.54\\ 7.322\\ 5.60\\ 5.32\\ 4.54\\ 7.322\\ 5.60\\ 5.39\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 4.539\\ 5.38\\ 4.50\\ 5.39\\ 4.539\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\ 4.50\\ 5.39\\ 5.38\\$	$\begin{array}{c} 183\\ 39\\ 89\\ 50\\ 39\\ 50\\ 39\\ 50\\ 64\\ 157\\ 150\\ 64\\ 623\\ 265\\ 71\\ 92\\ 169\\ 52\\ 169\\ 52\\ 803\\ 105\\ 839\\ 414\\ 98\end{array}$	$\begin{array}{c} 18\ 028\\ 23\ 631\\ 23\ 632\\ 28\ 742\\ 82\ 173\\ 27\ 330\\ 20\ 538\\ 14\ 590\\ 17\ 648\\ 14\ 590\\ 17\ 648\\ 14\ 590\\ 17\ 648\\ 14\ 974\\ 16\ 818\\ 20\ 850\\ 16\ 775\\ 26\ 640\\ 27\ 419\\ 30\ 480\\ 31\ 791\\ 18\ 834\\ 590\\ 27\ 419\\ 30\ 480\\ 31\ 791\\ 38\ 330\\ 290\\ 300\\ 31\ 791\\ 38\ 330\\ 200\\ 31\ 791\\ 38\ 330\\ 200\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\$	$\begin{array}{c} 1.192\\ 1.194\\ 1.194\\ 1.190\\ 1.189\\ 1.193\\ 1.183\\ 1.186\\ 1.195\\ 1.204\\ 1.204\\ 1.202\\ 1.203\\ 1.196\\ 1.196\\ 1.195\\ 1.197\\ 1.197\\ 1.197\\ 1.197\\ 1.194\\ 1.$
2037 2038 2039 2040 2041 2042 2043 2044 2044	165-40-F 55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F 110-16-F	6554 2012 4517 7482 5861 3356 7403 8361 2427	132.3 40.6 91.2 151.0 118.3 67.7 149.4 168.7 49.0	38 440 14 967 27 927 38 130 33 656 22 539 38 840 44 098 17 228	38 056 14 625 27 762 37 901 33 163 22 431 38 468 43 780 17 151	11.59 4.45 8.46 11.54 10.10 6.83 11.72 13.34 5.22	5.81 7.27 6.15 5.07 5.66 6.68 5.20 5.23 7.07	4.99 6.38 5.42 4.45 4.86 5.77 4.50 4.55 6.13	102 709 109 70 290 425 314 242 388	37 769 14 199 27 663 37 787 32 794 22 247 38 213 43 382 16 968	1.193 1.203 1.201 1.201 1.193 1.204 1.196 1.201 1.201
2072 2073 2074 2075 20776 2077 2078 2080 2081 2082 2083 2084 2085 2088 2088 2088 2088 2088 2088 2092 2093 2094 2095 2097 2098	$\begin{array}{c} 110 - 40 - F \\ 110 - 40 - F \\ 165 - 32 - F \\ 220 - 32 - F \\ 110 - 24 - F \\ 220 - 24 - F \\ 10 - 16 - F \\ 165 - 42 - F \\ 10 - 16 - F \\ 165 - 40 - F \\ 165 - 40 - F \\ 165 - 40 - F \\ 110 - 48 - F \\ 55 - 40 - F \\ 110 - 16 - F \\ 220 - 40 - F \\ 165 - 32 - F \\ 110 - 56 - F \\ 55 - 48 $	5927 4859 6015 2827 7831 3281 4707 5783 2422 1975 8994 3338 7914 3058 2068 2474 3353 11127 5640 10216 8434 3334	119.6 87.9 121.3 47.0 158.0 66.2 95.0 116.7 48.9 39.9 181.5 67.4 159.7 61.7 41.7 41.7 41.7 41.3 224.5 113.8 206.2 170.2 67.3	$\begin{array}{c} 33 & 910 \\ 28 & 029 \\ 34 & 856 \\ 16 & 574 \\ 39 & 261 \\ 21 & 959 \\ 28 & 668 \\ 31 & 849 \\ 17 & 392 \\ 14 & 326 \\ 41 & 078 \\ 22 & 022 \\ 20 & 22 \\ 02 & 22 \\ 02 & 022 \\ 20 & 730 \\ 14 & 329 \\ 17 & 314 \\ 22 & 459 \\ 45 & 902 \\ 34 & 866 \\ 45 & 355 \\ 23 & 805 \\ 21 & 222 \\ 18 & 124 \\ 24 & 498 \\ 24 & 4$	$\begin{array}{c} 33 & 656 \\ 27 & 866 \\ 34 & 551 \\ 16 & 523 \\ 38 & 820 \\ 21 & 878 \\ 28 & 493 \\ 31 & 597 \\ 17 & 336 \\ 14 & 289 \\ 40 & 738 \\ 21 & 914 \\ 22 & 328 \\ 44 & 938 \\ 23 & 707 \\ 21 & 057 \\ 17 & 933 \\ 24 & 216 \\ 24 &$	$\begin{array}{c} 10.25\\ 8.49\\ 10.52\\ 5.03\\ 11.82\\ 6.64\\ 8.68\\ 9.62\\ 5.28\\ 4.35\\ 12.41\\ 6.68\\ 11.77\\ 6.30\\ 4.35\\ 5.26\\ 6.80\\ 13.87\\ 10.54\\ 13.71\\ 7.22\\ 6.41\\ 5.46\\ 7.38\\ 0.54\\ 13.71\\ 7.22\\ 6.41\\ 5.46\\ 7.38\\ 0.52\\ 0.$	5.68 6.39 5.74 7.10 4.96 6.67 6.05 5.466 7.24 4.88 6.76 6.91 6.98 6.74 6.98 6.67 6.09 6.13 4.09 6.13 4.09 5.333 7.11	$\begin{array}{c} 4.95\\ 5.5.511\\ 6.18\\ 4.20\\ 5.82\\ 5.25\\ 4.99\\ 8.39\\ 5.66\\ 4.24\\ 5.9\\ 5.25\\ 4.24\\ 5.9\\ 5.25\\ 4.24\\ 4.58\\ 6.24\\ 4.58\\ 6.24\\ \end{array}$	78 238 216 171 82 141 101 224 214 211 60 425 60 146 213 189 142 42 64 36 80 73 285 291 303	$\begin{array}{c} 33 & 554 \\ 27 & 731 \\ 34 & 354 \\ 16 & 431 \\ 38 & 608 \\ 21 & 770 \\ 28 & 404 \\ 31 & 347 \\ 17 & 244 \\ 31 & 347 \\ 17 & 244 \\ 31 & 347 \\ 17 & 244 \\ 31 & 347 \\ 21 & 656 \\ 616 \\ 4 & 219 \\ 17 & 175 \\ 22 & 233 \\ 45 & 498 \\ 34 & 660 \\ 44 & 388 \\ 7 & 44 & 709 \\ 23 & 643 \\ 20 & 837 \\ 17 & 807 \\ 23 & 807 \\ 23 & 807 \\ 20 & 837 \\ 17 & 807 \\ 23 & 807 \\ 23 & 807 \\ 23 & 807 \\ 24 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 17 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 20 & 837 \\ 10 & 807 \\ 10 & 1$	1.197 1.203 1.195 1.204 1.193 1.203 1.204 1.198 1.201 1.198 1.206 1.193 1.201 1.205 1.219 1.208 1.204 1.202 1.198 1.204 1.198 1.204 1.198 1.204 1.198 1.204 1.205 1.204 1.205 1.204 1.205 1.204 1.205
2090 2091	110-24-F 165-32-F	3176 5252	64.1 106.0	21 688 33 534	21 614 33 320	$6.58 \\ 10.15$	6.80	6.00	73 39	21 542 33 178	1.203

TABLE 26.

BOILER PERFORMANCE-EQUIVALENT EVAPORATION, HORSE POWER, AND EFFICIENCY.

		Dry Steam Loss	Dry Coal	ry Equivalent Evaporation From and at 212°F., lb.							
Test No.	Laboratory Designation	per Hour Due to Calor- imeter, Leaks, Cor- rections etc., lb.	Loss per Hour Equiv- alent to Steam Loss, lb.	Per Hour	Per Hour per sq. ft. of Total Heating Surface	Per Hour per sq. ft. of Grate Area	Per lb. of Coal as Fired	Per lb. of Dry Coal	Per lb. of Com- bust- ible	Boiler Horse Power	Effi- ciency of Boiler, per cent
	CodeItem	642	643	645	648	656	657	658	659	660	666
2009 2010 2012 2013 2014 2015 2016 2017 2018 2020 2020 2022 2023 2022 2023 20224 20226 2027 2028 20227 2028 20220 2031 2032 20331 2032 20334	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-24-F\\ 83-24-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 110-16-F\\ 110-24-F\\ 110-24-F\\ 110-32-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 105-32-F\\ 105-32-F\\ 105-32-F\\ 105-32-F\\ 110-48-F\\ 193-40-F\\ \end{array}$	$\begin{array}{r} 4\\ 3\\ 7\\ 4\\ 9\\ 9\\ 9\\ 3\\ 3\\ 8\\ 5\\ 9\\ 3\\ 9\\ 3\\ 9\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$ \begin{array}{c} 1\\ 6\\ 1\\ 18\\ 6\\ 14\\ 12\\ 13\\ 16\\ 5\\ 40\\ 82\\ 18\\ 4\\ 7\\ -2\\ 7\\ 28\\ 28\\ 28\\ 23\\ \end{array} $	$\begin{array}{c} 21\ 669\\ 28\ 564\\ 28\ 514\\ 34\ 612\\ 38\ 820\\ 32\ 958\\ 824\ 804\\ 17\ 518\\ 21\ 826\\ 21\ 824\\ 21\ 934\\ 26\ 832\\ 21\ 092\\ 16\ 934\\ 25\ 206\\ 20\ 143\\ 32\ 108\\ 25\ 206\\ 20\ 143\\ 32\ 108\\ 31\ 517\\ 33\ 281\\ 517\ 33\ 286\\ 624\\ 46\ 380\end{array}$	$\begin{array}{c} 6.60\\ 8.71\\ 8.69\\ 10.54\\ 11.83\\ 10.04\\ 7.56\\ 5.33\\ 6.50\\ 8.17\\ 6.42\\ 5.16\\ 6.00\\ 7.68\\ 6.14\\ 9.78\\ 9.600\\ 10.14\\ 11.26\\ 11.77\\ 14.13\\ \end{array}$	$\begin{array}{r} 437.3\\ 576.5\\ 575.4\\ 698.5\\ 783.5\\ 605.2\\ 500.7\\ 353.4\\ 430.4\\ 425.7\\ 341.8\\ 531.4\\ 854.3\\ 368.5\\ 397.6\\ 508.7\\ 406.5\\ 648.0\\ 636.1\\ 671.7\\ 746.1\\ 779.5\\ 936.0\\ \end{array}$	$\begin{array}{c} 7.23\\ 6.57\\ 6.83\\ 5.68\\ 5.97\\ 8.05\\ 7.49\\ 7.49\\ 7.49\\ 7.49\\ 6.72\\ 6.42\\ 8.90\\ 7.50\\ 6.72\\ 6.49\\ 8.90\\ 7.50\\ 6.73\\ 6.64\\ 7.33\\ 6.64\\ 7.00\\ 6.49\\ 5.20\\ \end{array}$	$\begin{array}{r} 8.19\\ 7.45\\ 7.69\\ 7.29\\ 6.27\\ 6.69\\ 8.96\\ 8.96\\ 8.45\\ 8.53\\ 7.66\\ 7.17\\ 6.33\\ 10.07\\ 8.59\\ 7.74\\ 8.37\\ 7.55\\ 7.84\\ 6.91\\ 7.85\\ 7.84\\ 6.91\\ 7.97\\ \end{array}$	$\begin{array}{r} 9.36\\ 8.57\\ 8.96\\ 8.48\\ 7.36\\ 8.48\\ 7.77\\ 9.09\\ 10.35\\ 9.81\\ 9.77\\ 8.83\\ 8.46\\ 8.48\\ 9.77\\ 8.83\\ 8.46\\ 8.91\\ 9.73\\ 11.52\\ 10.01\\ 8.84\\ 8.91\\ 8.82\\ 8.81\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.82\\ 8.11\\ 8.82\\ 8.$	628.1 827.9 826.5 955.3 719.1 507.6 611.4 490.8 777.8 611.4 490.8 763.3 1226.9 529.2 571.0 730.6 583.9 930.7 930.7 930.7 930.7 930.7 913.5 964.7 1071.5 1119.5 364.4	$\begin{array}{c} 63.30\\ 57.63\\ 60.80\\ 57.78\\ 49.92\\ 52.84\\ 49.92\\ 52.84\\ 69.88\\ 66.49\\ 64.68\\ 67.33\\ 66.49\\ 64.68\\ 67.33\\ 66.49\\ 64.88\\ 55.54\\ 49.86\\ 67.75\\ 59.21\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.75\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.71\\ 58.85\\ 59.75\\ 59.71\\ 58.85\\ 59.75\\ 59$
2035 2037 2038 2039 2040 2041 2042 2043 2044 2045	110-40-F 165-40-F 110-32-F 165-40-F 110-40-F 110-48-F 110-48-F 110-56-F 110-16-F	287 426 99 114 369 184 255 398 183	49 59 16 23 65 27 49 76 26	39 578 45 859 17 676 33 529 45 802 40 168 27 132 46 472 52 948 20 704	13.97 5.38 10.21 13.95 12.24 8.26 14.16 16.13 6.31	925.5 356.7 676.7 824.4 810.7 547.6 937.9 1068.6 417.9	6.01 7.71 6.55 5.38 5.89 6.98 5.43 5.50 7.40	7.00 8.79 7.42 6.12 6.85 8.08 6.28 6.28 6.33 8.53	8.14 10.86 8.90 7.24 8.01 9.49 7.30 7.48 10.27	1329.3 512.4 971.9 1327.6 1164.3 787.0 1347.0 1534.7 600.1	54.54 74.51 61.38 48.84 54.18 63.89 48.60 50.38 69.65
2045 2072 2073 2074 2075 2077 2077 2077 2078 2083 2084 2085 2084 2085 2088 2088 2088 2088 2092 2098 2092 2093 2095 2095 2095 2095	$\begin{array}{c} 110 - 40 - F \\ 110 - 32 - F \\ 165 - 32 - F \\ 220 - 32 - F \\ 110 - 24 - F \\ 165 - 24 - F \\ 220 - 24 - F \\ 165 - 40 - F \\ 165 - 16 - F \\ 10 - 48 - F \\ 155 - 40 - F \\ 10 - 16 - F \\ 220 - 16 - F \\ 10 - 16 - F \\ 220 - 40 - F \\ 165 - 32 - F \\ 165 - 48 - F \\ 110 - 56 - F \\ 55 - 40 - F \\ 55 - 40 - F \\ 55 - 40 - F \\ 55 - 48 - F \\ \end{array}$	$\begin{array}{c} 102\\ 102\\ 135\\ 197\\ 92\\ 212\\ 108\\ 89\\ 250\\ 92\\ 4\\ 113\\ 262\\ -25\\ 58\\ 71\\ 84\\ 95\\ -393\\ 279\\ 64\\ 220\\ 126\\ 373\\ \end{array}$	$\begin{array}{c} 18\\ 21\\ 34\\ 13\\ 43\\ 16\\ 15\\ 46\\ 13\\ 25\\ 40\\ -5\\ 9\\ 10\\ 12\\ 14\\ 6\\ -10\\ -84\\ 52\\ 9\end{array}$	$\begin{array}{c} 40 \ 590 \\ 33 \ 719 \\ 954 \\ 46 \ 838 \\ 26 \ 417 \\ 34 \ 431 \\ 52 \ 923 \\ 17 \ 277 \\ 49 \ 007 \\ 26 \ 448 \\ 46 \ 913 \\ 25 \ 270 \\ 17 \ 300 \\ 820 \ 846 \\ 26 \ 995 \\ 54 \ 989 \\ 41 \ 770 \\ 57 \ 954 \\ 54 \ 336 \\ 28 \ 614 \\ 25 \ 822 \\ 21 \ 676 \\ 29 \ 251 \end{array}$	$\begin{array}{c} 12.36\\ 10.27\\ 12.70\\ 6.08\\ 14.27\\ 8.05\\ 10.49\\ 11.62\\ 6.37\\ 5.26\\ 14.93\\ 8.06\\ 14.29\\ 7.70\\ 5.27\\ 14.93\\ 8.02\\ 14.29\\ 7.70\\ 5.27\\ 12.72\\ 17.65\\ 12.72\\ 17.65\\ 8.72\\ 7.73\\ 6.60\\ 8.91\\ \end{array}$	$\begin{array}{c} 819.2\\ 680.5\\ 841.6\\ 402.7\\ 945.3\\ 533.1\\ 694.9\\ 770.0\\ 422.3\\ -348.7\\ 989.0\\ 533.8\\ 946.7\\ 509.9\\ 349.3\\ 420.7\\ 544.8\\ 1109.7\\ 842.9\\ 1169.5\\ 577.4\\ 512.2\\ 437.4\\ 590.3\\ \end{array}$	$\begin{array}{c} 5.97\\ 6.71\\ 6.16\\ 7.47\\ 5.07\\ 7.02\\ 6.33\\ 7.52\\ 7.73\\ 4.80\\ 6.83\\ 5.152\\ 7.23\\ 7.36\\ 7.46\\ 6.99\\ 4.38\\ 6.34\\ 6.99\\ 4.38\\ 5.53\\ 7.53\\ \end{array}$	6.85 7.74 6.93 8.57 5.98 8.05 7.31 6.60 8.64 8.745 5.95 5.93 8.25 5.93 8.25 7.92 5.93 8.26 8.37 7.40 7.41 5.67 4.94 7.41 5.58	7.95 8.79 8.01 9.72 6.86 9.24 8.39 7.45 9.72 9.92 6.15 9.09 9.09 9.09 9.09 9.04 9.45 9.77 9.60 5.77 8.43 6.52 7.41 10.03	$\begin{array}{c} 1176.5\\977.4\\1208.7\\578.4\\1357.6\\765.7\\998.0\\1105.9\\606.5\\500.8\\1420.5\\766.6\\1359.8\\732.5\\501.7\\604.2\\732.5\\1593.9\\1210.7\\1678.8\\1575.0\\829.4\\735.7\\628.3\\81575.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\829.4\\735.7\\628.3\\8157.0\\8$	53.36 58.92 53.50 65.46 46.41 61.82 56.66 50.18 65.28 66.89 41.87 60.72 46.764 63.544 64.58 38.777 56.95 43.822 50.33 67.61
2090 2091	110-24-F 165-32-F	72 142	11 23	26 091 40 240	7.95 12.26	526.5 812.0	7.24 6.64	8.22	9.41 8.74	1166.4	63.33 58.76

106 ILLINOIS ENGINEERING EXPERIMENT STATION

TABLE 27.

ENGINE PERFORMANCE-MEAN EFFECTIVE PRESSURE AND NUMBER OF EXPANSIONS.

		Mean	Effective	e Pressu	re, lb. per	sq. in.	n. Number of Expansions			
Test	Laboratory	Right	Side	Lef	t Side	Aver-	Right	Side	Left	Side
10.	Designation	Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End
	Code Item	674	675	676	677	678	697	698	699	700
2009 2010	138-16-F 193-20-F	32.8 28.3	82.9 36.9 53 1	32.9 29.0	37.7 36.4 53.7	34.1 32.6 50 1	2.51 2.18 2.15	2.34 2.38 2.36	2.35	2.50 2.56
2012 2013 2014 2014	138-32-F 138-32-F 193-32-F 193-24-F	56.8 44.7 33.8	65.5 52.2 40.3	57.4 41.6 32.8	65.9 49.7 40.3	61.4 47.1 36.8	1.95 1.78 2.21	1.84 1.89 2.21	1.93 1.99 2.18	2.03 1.94 2.30
2016 2017 2018	193–16–F 83–16–F 83–24–F	23.0 42.9 59.5	28.4 46.8 65.4	21.1 45.8 63.7	29.3 50.8 69.7	25.5 46.6 64.6	2.44 2.40 2.17	2.58 2.47 2.24	2.74 2.89 2.18	2.53 2.31 2.07
2019 2020 2021	83-32-F 83-24-F 83-16-F 83-32-F	76.2 58.2 42.2 77.2	85.1 63.5 43.8 86.7	79.9 62.4 47.3 80.6	89.6 68.6 52.7 89.5	63.2 46.5 83.5	2.03 2.38 2.65 1.97	$ \begin{array}{r} 1.82 \\ 2.05 \\ 2.57 \\ 1.85 \end{array} $	1.95 2.25 2.53 2.01	1.74 2.08 2.34 1.80
2022 2023 2024 2026	138-40-F 55-24-F 110-16-F	70.2 69.8 36.5	76.4 74.8 40.6	69.8 72.5 38.1	81.3 78.8 48.7	74.4 74.0 41.0	1.87 2.49	1.59 1.92	1.69 2.37	1.66 2.41
2027 2028 2029 2030	110-24-F 55-32-F 110-32-F 165-24-F	55.3 88.2 71.8 42.4	59.3 93.2 76.6 47.5	57.3 94.2 73.8 45.5	65.2 103.9 84.7 49.4	59.3 94.9 76.7 46.2	$2.26 \\ 1.96 \\ 2.08 \\ 2.21$	2.11 1.83 1.97 2.29	2.28 1.91 1.96 2.35	2.08 1.78 1.89 2.05
2031 2032 2033 2034	83-40-F 165-32-F 110-48-F 193-40-F	91.9 53.8 88.9 54.7	95.8 56.8 91.6 56.4	95.3 53.6 88.1 52.2	104.6 62.5 93.1 60.6	96.9 56.7 90.4 56.0	1.78 1.95 1.75 1.80	1.67 1.97 1.72 1.61	1.71 2.14 1.68 1.80	1.60 1.93 1.58 1.67
2035 2037	110-40-F 165-40-F	83.3 63.1	85.0 65.4	86.8 62.9	93.2 71.2	87.1 65.7	1.81 1.73	1.72 1.66	$1.67 \\ 1.84$	1.65 1.64
2038 2039 2040 2041 2042 2043 2044	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-56-F	66.6 69.3 61.8 83.3 54.3 97.4 103.0	73.6 77.0 66.2 90.4 60.7 101.3 107.0	73.1 71.9 62.1 85.8 60.8 98.3 104.8	80.3 79.4 68.1 91.1 63.8 102.5 108.7	73.4 74.4 64.5 87.7 59.9 99.9 105.9	$1.87 \\ 1.65 \\ 1.67 \\ 2.03 \\ 1.54 \\ 1.38$	$1.78 \\ 1.67 \\ 1.65 \\ 2.14 \\ 1.49 \\ 1.37$	$1.87 \\ 1.65 \\ 1.65 \\ 1.92 \\ 1.60 \\ 1.36$	$1.83 \\ 1.68 \\ 1.67 \\ 2.12 \\ 1.52 \\ 1.37$
2045 2072	110-16-F	37.2 94.1	42.0 99.3	40.3 96.9	45.0 100.2	41.1 97.6	2.13 1.64	2.39 1.63	1.97 1.63	2.28 1.67
2073 2074 2075 2076 2077	110-32-F 165-32-F 55-32-F 220-32-F 110-24-F	77.4 61.7 93.8 53.0 56.0	81.7 67.8 99.9 53.2 63.9	80.4 61.8 101.7 47.1 61.9	83.6 67.5 100.3 52.6 67.6	80.8 64.7 98.9 51.5 62.4	2.29 2.50 1.89 1.96 2.05	1.95 1.87 1.77 1.79 2.05	$1.92 \\ 1.92 \\ 1.83 \\ 1.76 \\ 2.04$	1.90 1.98 1.91 1.71 2.09
2078 2079 2080 2081	165-24-F 220-24-F 110-16-F 55-24-F	48.2 40.9 38.8 72.1	55.6 43.2 45.5 78.1 78.8	50.0 40.2 43.5 80.8 71.0	54.0 41.8 47.7 77.6 75.0	52.0 41.5 43.9 77.1	2.10 2.28 2.32 2.01	2.12 2.26 2.32 1.99	2.02 2.32 2.43 1.98	2.26 2.18 2.53 2.18 1.62
2082 2083 2084 2085	165-40-F 165-16-F 110-48-F 55-40-F	33.2 103.3 112.7	39.8 108.1 120.0 77.2	39.0 103.5 120.3	87.3 107.8 118.1 78.0	14.5 37.2 105.7 117.8 77 1	$ \begin{array}{r} 1.81 \\ 2.28 \\ 1.53 \\ 1.60 \\ 2.09 \\ \end{array} $	$ \begin{array}{r} 1.49 \\ 2.35 \\ 1.49 \\ 1.61 \\ 2.08 \\ \end{array} $	2.20 1.54 1.64 2.03	2.45 1.54 1.67 2.22
2087 2088 2089 2092	110-16-F 220-16-F 220-40-F 165-32-F	39.2 28.0 57.8	44.5 27.1 60.8 68.0	43.7 29.7 56.2 63.9	47.6 27.5 60.1 67.3	43.7 28.1 58.7 65.3	2.22 2.54 1.63 1.96	2.43 2.50 1.57 1.93	2.40 2.67 1.69 1.97	2.30 2.56 1.57 2.01
2093 2094 2095 2096	165-48-F 110-56-F 55-48-F 55-40-F	81.1 115.8 131.8 115.1	86.9 120.8 136.7 121.2	82.0 118.5 136.7 123.2	86.6 121.3 136.2 121.3	84.2 119.1 135.4 120.2	1.57 1.41 1.54 1.72	$1.47 \\ 1.42 \\ 1.49 \\ 1.63$	1.53 1.36 1.49 1.64	$ 1.45 \\ 1.42 \\ 1.55 \\ 1.71 $
2097 2098	55–32–F 55–48–F	97.0 133.0	103.7 138.1	103.2 141.3	102.2 137.7	101.5 137.5	1.85 1.54	1.82 1.49	1.79 1.50	1.93 1.57
2090 2091	110-24-F 165-32-F	52.7 54.2	59.1 60.2	59.2 58.1	61.4 60.9	58.1 58.3	2.10 2.05	2.32 1.81	2.20 2.16	$2.11 \\ 2.22$

TABLE 28.

Indicated Horse Power Test Laboratory Right Side Left Side No. Designation Maxi Total Head Crank Head Crank mum End End End End 707 708 709 710 711 721 Code Item 25 128.8 135.1 149.7 545.5 2009 138-16-F 131.9 687.5 737.0 203.4 204.5 167.9 197.3 193-20-F 161.2 902.5 2010 207.4 214.2 802.8 138-24-F 138-32-F 183.9 1023.7 2012 256.5 263.2 986 3 229.6 237.0 1224.6 2013 283.6 1079.0 202 0 193-32-F 258.4 245.01374.9 2014 193-24-F 193-16-F 83-16-F 225.9 230.5 167.2 845.6 1051.3 195.8 193.4 2015 158.9 583 8 133.1 124.6 774.8 2016 107.9 116.1 428.1 99.3 104.8 624.5 2017 83-24-F 83-32-F 137.6 146.6 150.3 159.3 593.8 742.0 2018 177.6 192.1 189.7 206.3 765.7 948.8 2019 83-24-F 83-16-F 135.4 143.2 148.1 157.7 584.4 596.3 2020 97.8 98.3 111.7 120.8 428.6 441.7 2021 180.0 195.9 191.8 206.2 773.9 797.9 83-32-F 2022 138-40-F 297.5 286.0 322.8 1188.7 282.4 2023 1217.6 55-24-F 110-16-F 102.3 106.2 108.3 114.2 431.0 2024 450.9 115.5 124.5 122.7 152.3 515.0 2026 527.6 182.7 185.7 749.1 110-24-F 55-32-F 175.9 204.8 2027 131.3 149.3 548.7 128.4 2028 557.6 228.1 235.8 225.2 968.6 2029 110-32-F 238.9 265.8 974.7 208.0 227.1 899.6 165-24-F 83-40-F 239.3 2030 924.4 226.9 229.5 241.1 256.4 300.2 953.9 2031 992.4 267.3 1094.6 165-32-F 110-48-F 193-40-F 265.7 2032 261.4 1125.8 282.0 1142.3 2033 282.6 285.4 292 3 1155.3 1276.7 313.6 305 3 343.8 297.7 314.0 2034 1299.0 266.1 1119.1 2035 110-40-F 269.4 285.9 1148.6 1277.7 309.1 310.1 313.9 344.6 2037 165-40-F 1307.5 97.8 104.7 109.4 116.5 428.4 2038 55-24-F 110-32-F 442.6 237.1 940.0 220.5 233.0 249.4 2039 967.5 1251.0 165-40-F 110-40-F 312.8 308.7 301.4 328.1 2040 1294.3 279.3 278.7 1110.4 265.4 287.0 2041 1133.7 753.9 186.5 197.0 197.4 321.2 799.9 2042 110-24-F 172.8 318.1 338.7 1259.6 110-48-F 110-56-F 311.3 2043 309.0 1284.3 328.7 129.2 1334.7 2044 326.7 340.6 1391.1 519.1 2045 110-16-F 118.2 130.5 141.2 534.7 110-40-F 110-32-F 299.3 305.9 1233.8 2072 313.8 314.8 1253.2 245.8 251.3 262.1 1019.3 2073 260.1 1047.8 110-02-F 165-32-F 55-32-F 220-32-F 110-24-F 303.7 322.9 309.7 328.0 145.7 1264.3 1282.6 2074 137.9 142.3 152.7 578.6 2075 597.2 344.0 1364.3 2076 353.5 320.0 346.8 1390.0 179.9 202.7 795.7 2077 198.8 214.3 813.9 165-24-F 220-24-F 236.4 263.8 249.5 275.3 1011.2 2078 261.5 1023.2 275.4 1109.9 281.1 2079 278.1 1152.3 110-16-F 124.3 141.3 142.0 558.5 2080 150.9 576.0 . 55-24-F 105.9 111.2 373.7 450 5 120.9 2081 112.5 467.6 165-40-F 165-16-F 353.1 361.1 1457.3 2082 369.4 1484.1 188.0 730.4 2083 163.9 1964 182.1 756.1 110-48-F 55-40-F 331.6 336.0 341.4 2084 338.5 1347.5 1366.2 2085 167.2 172.4 181.7 173.0 694.3 705.6 55-24-F 110-16-F 2086 106.5 111.4 123.2 114.9 456.0 466.4 574.9 2087 126.5 138.9 143.5 151.4 560.3 220-16-F 204.9 2088 189.5 177.7 184.0 756.1 791.4 220-40-F 2089 386.6 393.6 397.1 1559.9 1588.6 382.6 2092 165-32-F 302.2 321.4 324.1 1267.3 1427.0 319.6 2093 165-48-F 396.0 411.5 417.7 1633.5 1654.2 408.3 110-56-F 1521.4 2094 372.2 375.9 388.3 385.0 1570.1 55-48-F 55-40-F 55-32-F 55-48-F 2095 196.2 197.1 200.2 804.9 211.4 822.7 172.0 146.7 2096 175.3 178.9 713.6 733.1 187.4 2097 152.0 152.8 610.6 621.0 159.0 2098 200.0 201.1 216.6 204.5 822.2 837.5 2090 110-24-F 165-32-F 169.7 184.2 194.2 195.0 743.1 757.3 2091 266.6 286.6 291.0 295.8 1140.0 1170.8

ENGINE PERFORMANCE-INDICATED HORSE POWER.

108 ILLINOIS ENGINEERING EXPERIMENT STATION

TABLE 29.

ENGINE PERFORMANCE-COAL, STEAM, AND B.T.U. PER INDICATED HORSE POWER HOUR.

Test	Laboratory	Consume	per Hour		
No.	Designation	Dry Coal, 1b.	B.t.u. in Coal	Dry Steam, lb.	B.t.u. in Steam Above 32°F.
	Code Item	734	1 735	736	737
$\begin{array}{c} 2009\\ 2010\\ 2012\\ 2013\\ 2014\\ 2015\\ 2016\\ 2017\\ 2018\\ 2019\\ 2020\\ 2021\\ 2022\\ 2023\\ 2024\\ 2026\\ 2027\\ 2028\\ 2026\\ 2027\\ 2028\\ 2029\\ 2030\\ 2031\\ 2032\\ 2032\\ 2033\\ 2034\\ 2035\\ 2034\\ 2035\\ 2037\\ \end{array}$	$\begin{array}{c} \textbf{code 11cm2} \\ \textbf{138-16-F} \\ \textbf{138-24-F} \\ \textbf{138-24-F} \\ \textbf{138-32-F} \\ \textbf{193-32-F} \\ \textbf{193-32-F} \\ \textbf{193-16-F} \\ \textbf{83-16-F} \\ \textbf{83-24-F} \\ \textbf{83-32-F} \\ \textbf{83-32-F} \\ \textbf{83-32-F} \\ \textbf{83-32-F} \\ \textbf{83-32-F} \\ \textbf{83-32-F} \\ \textbf{138-40-F} \\ \textbf{55-24-F} \\ \textbf{110-40-F} \\ \textbf{110-32-F} \\ \textbf{165-32-F} \\ \textbf{165-32-F} \\ \textbf{165-32-F} \\ \textbf{165-32-F} \\ \textbf{110-48-F} \\ \textbf{193-40-F} \\ \textbf{110-40-F} \\ \textbf{110-40-F} \\ \textbf{165-40-F} \end{array}$	$\begin{array}{r} 734\\ \hline 4.85\\ 5.19\\ 4.61\\ 5.72\\ 5.82\\ 5.55\\ 4.54\\ 4.25\\ 4.25\\ 4.28\\ 4.22\\ 5.07\\ 4.75\\ 5.56\\ 4.17\\ 4.34\\ 4.37\\ 4.38\\ 4.45\\ 4.42\\ 4.45\\ 4.45\\ 6.07\\ 4.99\\ 5.09\end{array}$	$\begin{array}{c} 730\\ \hline 60\ 882\\ 64\ 527\\ 56\ 611\\ 58\ 884\\ 69\ 692\\ 71\ 627\\ 66\ 556\\ 396\\ 52\ 126\\ 52\ 346\\ 51\ 914\\ 62\ 229\\ 56\ 406\\ 68\ 449\\ 53\ 009\\ 54\ 652\\ 55\ 066\\ 55\ 294\\ 55\ 188\\ 56\ 769\\ 52\ 991\\ 59\ 619\\ 54\ 481\\ 71\ 838\\ 61\ 522\\ 63\ 325\\ \end{array}$	$\begin{array}{r} 736\\ \hline 33.06\\ 32.07\\ 29.44\\ 29.82\\ 32.82\\ 35.18\\ 34.08\\ 39.71\\ 28.96\\ 29.99\\ 32.10\\ 38.14\\ 29.10\\ 34.74\\ 31.67\\ 27.84\\ 30.57\\ 27.51\\ 28.95\\ 27.84\\ 27.83\\ 30.02\\ 29.43\\ 29.43\\ 29.56\\ \end{array}$	737 35 943 38 478 33 723 34 876 41 650 37 969 33 377 36 653 32 984 34 756 34 468 33 365 33 365 33 363 35 982 35 278 35 278
2038 2039 2040 2041 2042 2043 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-28-F 110-56-F 110-16-F	$\begin{array}{c} 4.56 \\ 4.79 \\ 5.96 \\ 5.22 \\ 4.42 \\ 5.84 \\ 6.21 \\ 4.63 \end{array}$	$\begin{array}{c} 52 \ 176 \\ 56 \ 206 \\ 72 \ 497 \\ 64 \ 081 \\ 54 \ 247 \\ 73 \ 134 \\ 75 \ 712 \\ 55 \ 028 \end{array}$	$\begin{array}{c} 33.14\\ 29.43\\ 30.21\\ 29.54\\ 29.52\\ 30.34\\ 32.50\\ 32.69\\ \end{array}$	39 745 35 287 36 206 35 407 35 391 36 372 38 948 39 195
$\begin{array}{c} 2072\\ 2073\\ 2074\\ 2075\\ 2076\\ 2077\\ 2078\\ 2079\\ 2080\\ 2081\\ 2082\\ 2083\\ 2084\\ 2085\\ 2084\\ 2085\\ 2084\\ 2085\\ 2086\\ 2087\\ 2088\\ 2089\\ 2092\\ 2093\\ 2094\\ 2095\\ 2096\\ 2097\\ 2098 \end{array}$	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 220-32-F\\ 110-24-F\\ 110-24-F\\ 110-16-F\\ 55-24-F\\ 110-16-F\\ 165-16-F\\ 110-48-F\\ 110-48-F\\ 110-48-F\\ 110-48-F\\ 110-6-F\\ 220-16-F\\ 110-6-F\\ 220-16-F\\ 110-6-F\\ 110-6-F\\ 220-16-F\\ 105-32-F\\ 165-48-F\\ 55-48-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-32-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 4.79\\ 4.26\\ 4.73\\ 4.00\\ 5.71\\ 4.10\\ 4.63\\ 5.17\\ 4.31\\ 4.36\\ 6.15\\ 4.52\\ 5.88\\ 4.39\\ 4.51\\ 4.39\\ 4.42\\ 7.10\\ 4.46\\ 6.31\\ 5.58\\ 4.15\\ \end{array}$	$\begin{array}{c} 59\ 683\\ 54\ 819\\ 59\ 480\\ 50\ 872\\ 71\ 483\\ 51\ 795\\ 57\ 954\\ 66\ 005\\ 55\ 375\\ 55\ 375\\ 77\ 650\\ 57\ 223\\ 72\ 353\\ 55\ 411\\ 56\ 763\\ 53\ 383\\ 53\ 383\\ 53\ 383\\ 53\ 460\\ 87\ 728\\ 56\ 285\\ 79\ 197\\ 69\ 337\\ 51\ 107\\ \end{array}$	$\begin{array}{c} 27.19\\ 27.20\\ 27.17\\ 28.40\\ 28.30\\ 27.36\\ 28.09\\ 28.25\\ 30.87\\ 31.53\\ 27.88\\ 29.65\\ 28.69\\ 29.69\\ 31.18\\ 30.65\\ 29.40\\ 29.18\\ 27.34\\ 29.62\\ 29.39\\ 29.37\\ \end{array}$	$\begin{array}{c} 32\ 601\\ 32\ 586\\ 32\ 574\\ 34\ 052\\ 33\ 929\\ 32\ 788\\ 33\ 677\\ 33\ 869\\ 37\ 016\\ 37\ 808\\ 33\ 423\\ 35\ 558\\ 34\ 391\\ 35\ 558\\ 36\ 752\\ 35\ 251\\ 34\ 991\\ 35\ 558\\ 36\ 752\\ 35\ 251\\ 34\ 978\\ 32\ 783\\ 35\ 500\\ 35\ 215\\ 35\ 005\\ 34\ 978\\ 34\ 783\\ 34\ 7$
2090 2091	110-24-F 165-32-F	4.26 4.58	53 650 58 080	28.99 29.10	34 762 34 894

TABLE 30.

GENERAL PERFORMANCE-DRAWBAR HORSE POWER AND MILLIONS OF FOOT POUNDS AT DRAWBAR.

Treat	Laboratory	Drawbar	Consumed	l per D.H	.P. Hour	Millions of Foot	Per M	lillion F	t. lb. at
No.	Designation	Horse Power	Dry Coal, lb.	Dry Steam, lb.	B.t.u.	at Drawbar per Hour	Dry Coal, lb.	Dry Steam, lb.	B.t.u.
	Code Item	1 743	744	745	746	750	752	753	754
2009	138-16-F								101
2010	193-20-F		SPOK P	PASSING.					
2012	138-24-F	684.9	5.40	34.50	66 312	1357	2.73	17.4	33 524
2013	138-32-F	863.7	5.50	33.28	67 331	1711	2.77	16.8	33 910
2014	193-32-F	853.1	7.25	37.71	88 334	1689	3.66	19.0	44 593
2015	193-24-F	626.2	7.86	43.64	96 733	1240	3.97	22.0	48 859
2016	193-16-F	418.2	7.75	49.11	92 938	828	3.92	24.8	47 009
2017	83-10-F	5117	0.40	34 48	60 466	1014	2.75	20.0	34 161
2010	83_32_F	683 1	4.50	32.46	58 608	1953	2.49	16.4	30 540
2020	83-24-F	508.9	4.85	34.46	59 665	1009	2.44	17.4	30 017
2021	83-16-F	346.3	6.27	39.72	76 958	686	3.16	20.0	38 786
2022	83-32-F	674.6	5.44	32.29	64 600	1336	2.75	16.3	32 656
2023	138-40-F	1070.5	6.16	32.31	75 836	2120	3.11	16.3	38 287
2024	55-24-F	355.6	5.05	42.34	64 196	706	2.54	21.2	32 288
2026	110-16-F	415.1	5.51	39.31	67 823	822	2.78	19.8	34 219
2027	110-24-F	633.6	5.13	32.92	65 089	1255	2.59	16.6	32 862
2028	55-32-F	488.1	4.91	34.37	62 126	967	2.48	17.3	81 379
2029	110-32-F	820.8	5.17	25.05	04 000	1020	2.01	10.4	02 000
2030	103-24-F	860 7	1.85	31 52	58 147	1400	2.45	15.9	29 373
2032	165-32-F	922.8	5 77	33.22	70 636	1828	2.91	16.7	35 624
2033	110-48-F	1007.9	5.05	31.54	61 827	1996	2.55	15.9	31 220
2034	193-40-F	961.7	8.05	39.86	95 272	1905	4.07	20.1	48 168
2035	110-40-F	942.9	5.92	34.99	72 988	1868	2.99	17.6	36 864
2037	165-40-F	1045.3	6.22	36.09	77 383	2070	3.14	18.2	39 065
2038	55-24-F	368.4	5.30	38.54	60 643	730	2.68	19.4	30 665
2039	110-32-F	824.2	5.46	33.56	64 068	1631	2.76	17.0	32 386
2040	165-40-F	1133.6	6.58	33.33	80 039	2244	3.32	16.8	40 384
2041	110-40-F	1007.7	5.75	32.54	10 587	1995	2.91	16.4	35 723
2042	110-24-F	074.8	4.93	32.97	70 591	1330	2.49	16.7	40 100
2040	110-56-F	12577	0.35	34.90	80 345	2495	3 33	17.4	40 599
2045	110-16-F	436.6	5.50	38.86	65 368	865	2.78	19.6	33 040
2072	110-40-F	1107.8	5.33	30.28	66 412	2193	2.69	15.3	33 517
2073	110-32-F	898.3	4.83	30.87	61 587	1779	2.44	15.6	31 112
2074	165-32-F	1107.3	5.40	31.03	67 905	2193	2.73	15.7	34 330
2075	55-32-F	501.4	4.62	32.76	58 757	993	2.33	16.5	29 633
2076	220-32-F	1157.1	6.73	33.36	84 253	2291	3.40	16.9	42 505
2077	165 94 E	070.2	4.87	32.48	70 946	1028	2.40	171	35 548
2010	220-24-F	0285	0.04 £ 19	22.84	78 900	1830	3 1 2	17.0	39 833
2080	110-16-F	020.0	0.10	00.04	10000	1000	0.14	2110	00000
2081	55-24-F			21514					
2082	165-40-F	1214.6	7.38	33.45	93 180	2405	3.73	16.9	47 095
2083	165-16-F	583.6	5.65	37.10	71 529	1156	2.85	18.7	36 081
2084	110-48-F	1197.2	6.62	32.30	81 459	2371	3.34	16.3	41 099
2085	55-40-F	614.5	4.96	33.55	62 605	1217	2.51	16.9	31 681
2086	55-24-F	386.0	5.33	36.83	60 001	04	2.09	10.0	33 000
2001	110-10-F	401.0	5.03	25 91	63 083	1250	2.0%	17.8	32 294
2080	220-40-F	1321 6	8 38	34 42	103 543	2617	4.25	17.4	52 513
2092	165-32-F	1117.6	5.06	31.01	63 857	2213	2.55	15.7	32 181
2093	165-48-F	1431.6	7.19	33.80	90 242	2835	3.63	17.1	45 560
2094	110-56-F	1354.1	6.27	33.02	77 911	2681	3.17	16.7	39 390
2095	55-48-F	718.0	4.66	32.92	57 388	1422	2.35	16.6	28 940
2096	55-40-F	622.8		33.46		1234		16.9	1000
2097	55-32-F	525.2		33.91		1040		17.1	
2098	55-48-F	732.2		32.56		1450		10.4	
2090	110-24-F	614.9	5.15	35.03	64 859	1218	2.60	17.7	32 744
2091	165-32-F	985.6	5.31	33.66	67 044	1952	2.68	1 17.0	33 838

TABLE 31.

GENERAL PERFORMANCE—INDICATED HORSE POWER, DRAWBAR HORSE POWER, AND TRACTIVE FORCE.

Test No.	Laboratory Designation	Indicated I Per sq. ft. of Hesting	Forse Power Per sq. ft. of Grate	Drawbar H Per sq. ft. of Hesting	lorse Power Per sq. ft. of Grate	Tractive Force Based on MEP
		Surface	Surface	Surface	Surface	lb.
	CodeItem	755	756	757	758	764
2009	138-16-F	0.17	11.01			8 096
2010	193-20-F	0.22	14.89	1. 18		7 745
2012	138-24-F	0.24	16.23	0.21	13.84	11 876
2013	138-32-F	0.30	19.91	0.26	17.43	14 581
2014	193-32-F	0.33	21.84	0.26	17.27	11 153
2015	193-24-F	0.20	11.09	0.13	8 48	6 031
2017	83-16-F	0.13	8.69	0.11	7.25	11 050
2018	83-24-F	0.18	12.04	0.16	10.39	15 325
2019	83-32-F	0.23	15.53	0.21	13.86	19 621
2020	83-24-F	0.18	11.81	0.16	10.29	14 994
2021	83-16-F	0.13	8.81	0.11	7.12	11 050
2022	83-32-F	0.24	24 20	0.33	21.87	17 650
2024	55-24-F	0.13	8.79	0.11	7.25	17 555
2026	110-16-F	0.16	10.41	0.13	8.39	9 728
2027	110-24-F	0.23	15.15	0.19	12.82	14 065
2028	55-32-F	0.17	11.11	0.15	9.89	22 533
2029	110-32-F	0.29	19.54	0.25	16.56	18 216
2031	105-24-F	0.27	10.19	0.22	17.66	22 967
2032	165-32-F	0.34	22.20	0.28	18.71	13 445
2033	110-48-F	0.35	23.22	0.31	20.49	21 459
2034	193-40-F	0.39	25.85	0.29	19.47	13 280
2035	110-40-F	0.34	22.53	0.29	18.98	20 674
2037	165-40-F	0.39	25.99	0.32	21.26	15 593
2038	55-24-F	0.13	8.91	0.12	16.60	17 431
2039	165-40-F	0.29	25.23	0.25	22.95	15 304
2041	110-40-F	0.34	22.65	0.31	20.57	20 819
2042	110-24-F	0.23	15.33	0.21	13.73	14 148
2043	110-48-F	0.39	25.59	0.36	23.54	23 710
2044 2045	110-56-F 110-16-F	0.41 0.16	27.22 10.59	0.39 0.13	25.63 8.91	25 115 9 769
2072	110-40-F	0.38	24.97	0.34	22.43	23 256
2073	110-32-F	0.31	20.67	0.27	18.22	19 249
2074	105-32-F	0.39	20.07	0.34	10.18	15 387
2076	220-32-F	0.42	27.68	0.35	23.48	12 247
2077	110-24-F	0.24	16.14	0.21	13.60	14 850
2078	165-24-F	0.31	20.47	0.25	16.88	12 351
2079	220-24-F	0.34	22.58	0.29	18.89	9 893
2081	110-10-F	0.14	0 14			10 401
2082	165-40-F	0.45	29.49	0.37	24.58	17 741
2083	165 - 16 - F	0.23	14.92	0.18	11.92	8 860
2084	110-48-F	0.41	27.19	0.36	24.16	25 218
2085	55-40-F	0.21	14.05	0.19	12.43	28 047
2087	110-16-F	0.17	11.37	0.12	8.87	10 400
2088	220-16-F	0.23	15.83	0.19	12.79	6 671
2089	220-40-F	0.48	31.50	0.40	26.68	13 962
2092	165-32-F	0.39	25.53	0.34	22.51	15 531
2093	165-48-F	0.49	32.69	0.43	28.66	20 158
2094	55-48-F	0.47	16.28	0.42	14.53	20 330
2096	55-40-F	0.22	14.55	0.19	12.70	28 605
2097	55-32-F	0.19	12.41	0.16	10.68	24 205
2098	55-48-F	0.25	16.85	0.23	15.01	32 818
2090	110-24-F	0.23	15.05	0.19	12.45	13 879

110

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE 111

TABLE 32.

GENERAL PERFORMANCE-MACHINE FRICTION, EFFICIENCIES, AND

RATIOS.

	12-2-1	M	fachine Fr motive i	n Term	f Loco- s of	Machine	Efficience	Ra	Total
Test No.	Laboratory Designation	Horse Power	Mean Effective Pressure, Ib. per sq. in.	Draw- bar Pull, lb.	Per cent of Indicated Horse Power	Efficiency of Loco- motive, per cent	of Loco- motive per cent	Weight of Loco- motive to Maxi- mum I.H.P.	Heating Surface to Maxi- mum I.H.P.
	CodeItem	770	771	772	773	778	779	785	786
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-24-F\\ 83-16-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 138-40-F\\ \end{array}$	117.9 122.6 225.9 219.4 165.6 71.0 82.1 82.6 75.5 82.3 99.3 118 2	7.35 7.63 9.86 9.56 7.22 7.72 8.93 8.92 8.16 8.93 10.71 7.40	1746 1812 2337 2267 1711 1837 2120 2118 1938 2123 2545 1757	14.7 12.4 20.9 26.0 28.4 16.6 13.8 10.8 12.9 19.2 19.2 12.8 9 9	85.3 87.6 79.1 74.1 71.6 83.4 86.2 87.2 87.1 80.8 87.2 90.1	3.84 3.78 2.88 2.63 2.74 3.76 4.21 4.35 4.27 3.31 3.94 3.36	324.4 247.1 217.8 182.1 162.2 212.1 287.8 357.1 300.5 235.0 374.0 504.9 279.5 183.2	4.8 3.6 3.2 2.7 2.4 3.1 4.2 5.3 4.4 3.5 5.5 7.4 4.1 2.7
2023 2024 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2037	10-10-F 55-24-F 110-16-F 110-24-F 55-32-F 110-32-F 165-24-F 165-32-F 110-48-F 110-48-F 193-40-F 110-40-F	75.4 99.9 115.5 60.6 147.8 173.8 84.2 171.8 134.4 315.0 176.2 232.4	12.94 7.95 9.14 10.47 11.71 8.93 8.56 8.90 10.64 13.81 13.70 11.94	1737 3073 1887 2169 2489 2781 2118 2023 2112 2527 3279 3256 2836	17.5 19.4 15.4 11.0 15.3 19.3 8.8 15.7 11.8 24.7 15.7 15.7	82.5 80.6 89.0 84.7 80.7 91.2 84.3 88.2 75.3 84.3 81.8	3.97 3.75 3.91 4.10 3.94 3.62 4.38 3.61 4.12 2.67 3.49 3.29	494.6 422.7 399.9 235.3 241.2 224.7 198.1 193.0 171.7 194.2 170.6	7.3 6.2 5.9 3.4 3.6 3.3 2.9 2.8 2.5 2.9 2.5
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	60.0 115.8 117.4 102.7 78.9 101.1 77.0 82.5	10.28 9.17 6.05 8.11 6.27 8.02 6.10 6.53	2440 2175 1437 1923 1483 1903 1449 1551	14.0 12.3 9.4 9.3 10.5 8.0 5.8 15.9	86.0 87.7 90.6 90.8 89.5 92.0 94.2 84.1	4.20 3.97 3.18 3.61 4.21 3.20 3.17 3.90	503.8 230.5 172.3 196.8 278.9 173.7 160.3 417.1	7.4 3.4 2.5 2.9 4.1 2.6 2.4 6.1
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	126.0 121.0 157.0 77.2 207.2 125.5 177.4 181.4	9.97 9.59 8.04 13.20 7.81 9.83 9.10 6.78	2375 2284 1913 3154 1861 2342 2169 1615	10.2 11.9 12.4 13.3 15.2 15.8 17.5 16.3	89.8 88.1 87.6 86.7 84.8 84.2 82.5 83.7	3.83 4.13 3.75 4.33 3.02 4.14 3.62 3.23	$\begin{array}{c} 177.9\\ 212.8\\ 173.9\\ 373.4\\ 160.4\\ 274.0\\ 217.9\\ 193.5\\ 387.2\\ 476.9\end{array}$	2.6 3.1 2.6 5.5 2.4 4.0 3.2 2.9 5.7 7.0
2082 2083 2084 2085 2086 2087 2088 2092 2093 2094 2095 2095 2096 2097 2098	$\begin{array}{c} 165-40-F\\ 165-16-F\\ 110-48-F\\ 55-40-F\\ 55-24-F\\ 110-16-F\\ 220-16-F\\ 120-40-F\\ 165-32-F\\ 165-32-F\\ 165-48-F\\ 55-48-F\\ 55-48-F\\ 55-32-F\\ 55-48-F\\ \end{array}$	242.7 146.8 150.3 79.8 70.0 122.7 124.8 238.3 149.7 201.9 167.3 86.9 90.8 85.4 90.0	$\begin{array}{c} 12.40 \\ 7.46 \\ 11.79 \\ 13.54 \\ 11.83 \\ 9.57 \\ 4.64 \\ 8.97 \\ 7.71 \\ 10.41 \\ 13.10 \\ 14.62 \\ 15.28 \\ 14.20 \\ 15.06 \end{array}$	2954 1780 2813 3224 2817 2280 1101 2134 1834 2491 3117 3501 3641 3385 3592	$\begin{array}{c} 16.7\\ 20.1\\ 11.2\\ 11.5\\ 15.4\\ 21.9\\ 16.5\\ 15.3\\ 11.8\\ 12.4\\ 11.0\\ 10.8\\ 12.7\\ 14.0\\ 11.0\\ \end{array}$	83.4 79.9 88.9 88.5 84.7 78.1 83.5 84.7 88.2 87.6 89.0 89.2 87.3 86.0 89.1	$\begin{array}{c} 2.73\\ 3.56\\ 3.13\\ 4.07\\ 3.80\\ 3.98\\ 2.46\\ 3.99\\ 2.82\\ 3.27\\ 4.44 \end{array}$	$\begin{array}{c} 150.3\\ 294.9\\ 163.2\\ 316.0\\ 478.1\\ 387.9\\ 281.8\\ 140.4\\ 156.3\\ 134.8\\ 142.0\\ 271.1\\ 304.2\\ 359.1\\ 266.3 \end{array}$	$\begin{array}{c} 2.2 \\ 4.3 \\ 2.4 \\ 4.7 \\ 7.0 \\ 5.7 \\ 4.2 \\ 2.1 \\ 2.3 \\ 2.0 \\ 2.1 \\ 4.0 \\ 4.5 \\ 5.3 \\ 3.9 \end{array}$
2090 2091	110-24-F 165-32-F	128.2 154.4	10.02 7.89	2394 1884	17.3 13.5	82.8 86.5	3.93 3.80	294.5 190.5	4.3 2.8

TABLE 33.

ANALYSIS OF ASH, FRONT-END CINDERS, AND STACK CINDERS.

		Ana	lysis of	Ash	Anal	ysis of I nd Cinde	Front-	An	alysis of Cinder	Stack
Test No.	Laboratory Designation	Car- bon, per cent	Earthy Matter, per cent	Mois- ture, per cent	Car- bon, per cent	Earthy Matter, per cent	Mois- ture, per cent	Car- bon, per cent	Earthy Matter, per cent	Mois- ture, per cent
	Code Item &	831	832	833	841	842	843	846	847	848
2009 2010 2012 2013 2015 2016 2017 2018 2021 2022 2023 2024 2022 2023 2024 2026 2027 2028 2029	$\begin{array}{c} \begin{array}{c} 0 \\ \hline $	34.90 30.26 29.34 31.53 25.41 33.03 80.75 30.12 27.49 24.59 44.49 44.49 44.49 35.90 26.24 35.90 29.04 41.33 33.08 27.48 37.00 38.29	$\begin{array}{c} 51.97\\ 51.97\\ 60.22\\ 63.97\\ 62.82\\ 66.84\\ 58.52\\ 59.56\\ 63.55\\ 63.55\\ 67.01\\ 71.63\\ 50.94\\ 62.95\\ 72.63\\ 64.76\\ 68.25\\ 51.24\\ 63.71\\ 70.63\\ 60.61\\ 56.74 \end{array}$	$\begin{array}{c} \textbf{3.3}\\ \textbf{10.92}\\ \textbf{10.92}\\ \textbf{7.33}\\ \textbf{4.21}\\ \textbf{2.86}\\ \textbf{4.66}\\ \textbf{4.48}\\ \textbf{5.73}\\ \textbf{3.78}\\ \textbf{3.71}\\ \textbf{1.15}\\ \textbf{3.24}\\ \textbf{2.70}\\ \textbf{7.43}\\ \textbf{3.21}\\ \textbf{1.89}\\ \textbf{2.89}\\ \textbf{2.897}\\ \textbf{4.97} \end{array}$	57.47 42.75 42.52 87.46 88.60 18.19 99.95 29.99 44.08 45.85 27.25 51.32 39.46 45.85 51.32 39.46 48.85 48.85 48.85 48.85 48.85 48.85 48.85	35.565 54.85 54.83 57.42 57.42 57.42 57.42 57.42 65.99 52.97 48.93 44.31 53.00 72.05 47.83 38.60 50.37 50.38 65.56 51.11	$\begin{array}{c} 4.50\\ 4.50\\ 0.58\\ 0.62\\ 1.50\\ 0.62\\ 0.73\\ 1.84\\ 2.71\\ 1.84\\ 2.71\\ 1.84\\ 0.88\\ 2.71\\ 1.15\\ 0.70\\ 0.85\\ 21.94\\ 0.85\\ 0.82\\ 0.53\\ 0.67\\ 0.01\end{array}$	$\begin{array}{c} 44.35\\ 61.97\\ 52.71\\ 60.26\\ 66.76\\ 63.90\\ 56.47\\ 40.17\\ 50.62\\ 55.30\\ 46.34\\ 51.63\\ 64.48\\ 51.63\\ 64.48\\ 51.63\\ 64.48\\ 51.63\\ 64.48\\ 51.63\\ 64.71\\ 14\\ 43.59\\ 56.14\\ 56.19\\ 56.14\\ 56.19\\ 53.17\\ 60.79\\ 67.31\end{array}$	51.75 51.75 34.90 37.00 28.48 37.00 28.48 37.00 50.54 44.44 40.83 52.40 46.90 33.95 52.8.56 42.77 43.24 44.05 38.27 38.27	$\begin{array}{c} 0.84\\ 0.54\\ 0.84\\ 0.54\\ 2.23\\ 1.26\\ 0.81\\ 7.02\\ 2.64\\ 1.27\\ 1.26\\ 1.47\\ 1.27\\ 0.30\\ 1.37\\ 1.09\\ 0.57\\ 2.78\\ 0.94\\ 0.35\\ \end{array}$
2030 2031 2032 2033 2034 2035 2037	165-24-F 83-40-F 165-32-F 110-48-F 193-40-F 110-40-F 165-40-F	29.05 41.04 31.93 36.31 37.81 40.50	69.49 55.71 66.04 61.59 60.00 56.91	1.46 3.25 2.03 2.10 2.19 2.59	20.82 52.59 19.52 43.05 40.73 45.64	78.66 46.76 79.89 56.35 58.72 53.40	0.01 0.52 0.65 0.59 0.60 0.55 0.96	66.13 33.80 67.86 71.39 66.60 69.72	32.34 32.96 65.28 31.48 28.04 32.69 29.61	$\begin{array}{c} 0.33\\ 0.91\\ 0.92\\ 0.66\\ 0.57\\ 0.71\\ 0.67\end{array}$
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-48-F 110-56-F 110-16-F	42.04 29.59 38.57 34.91 36.54 32.99 29.99 33.14	57.58 69.28 59.98 63.69 62.11 64.35 67.45 65.06	0.38 1.13 1.45 1.40 1.35 2.66 2.56 1.80	46.39 42.74 34.78 46.43 47.78 10.55 26.19 52.44	52.05 55.44 64.71 52.35 51.63 89.37 73.50 47.41	1.56 1.82 0.51 1.22 0.59 0.08 0.31 0.15	38.95 58.50 70.55 66.22 57.25 69.26 73.92 46.58	60.16 40.89 28.96 33.30 42.08 30.14 25.64 53.03	$\begin{array}{c} 0.89\\ 0.61\\ 0.49\\ 0.48\\ 0.67\\ 0.60\\ 0.44\\ 0.39\end{array}$
$\begin{array}{c} 2072\\ 2073\\ 2075\\ 2075\\ 2076\\ 2077\\ 2078\\ 2080\\ 2080\\ 2080\\ 2082\\ 2083\\ 2084\\ 2083\\ 2084\\ 2085\\ 2085\\ 2086\\ 2089\\ 2093\\ 2093\\ 2093\\ 2095\\ 2095\\ 2097\\ 2098 \end{array}$	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 120-24-F\\ 10-16-F\\ 10-4-F\\ 110-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 110-5-48-F\\ 10-40-F\\ 1$	26.72 35.55 29.52 28.52 28.41 38.08 30.34 32.06 34.94 31.38 83.16 29.94 28.16 29.94 28.16 29.516 34.23 44.12 37.66 31.83	$\begin{array}{c} 70.98\\ 60.82\\ 68.03\\ 69.36\\ 64.08\\ 40.16\\ 69.20\\ 60.22\\ 64.62\\ 61.87\\ 66.82\\ 64.62\\ 61.87\\ 66.19\\ 69.64\\ 69.47\\ 71.15\\ 72.85\\ 63.49\\ 54.79\\ 63.49\\ 54.79\\ 61.46\\ 67.47\\ \end{array}$	$\begin{array}{c} 2.303\\ 3.633\\ 2.45\\ 0.31\\ 2.72\\ 7.92\\ 2.39\\ 2.39\\ 1.87\\ 1.17\\ 2.72\\ 3.19\\ 1.97\\ 0.65\\ 0.69\\ 1.99\\ 2.28\\ 1.09\\ 1.99\\ 2.28\\ 1.09\\ 0.88\\ 0.70\\ \end{array}$	$\begin{array}{c} 32.50\\ 34.42\\ 40.97\\ 48.76\\ 44.16\\ 56.25\\ 42.02\\ 44.20\\ 41.82\\ 45.85\\ 53.99\\ 24.30\\ 51.37\\ 22.63\\ 39.45\\ 19.32\\ 41.25\\ 36.73\\ 41.35\\ 42.96\\ 62.66\\ \end{array}$	$\begin{array}{c} 67.18\\ 65.08\\ 58.68\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 56.18\\ 57.69\\ 58.12\\ 57.69\\ 58.12\\ 57.69\\ 58.52\\ 58.52\\ 58.52\\ 58.42\\ 58.42\\ 58.42\\ 55.86\\ 87.00\\ 87.00\\ \end{array}$	0.32 0.50 0.35 0.06 0.34 0.20 0.50 0.50 0.50 0.50 0.52 2.18 0.21 22.94 0.20 6.64 0.27 0.32 0.23 1.98 0.34	$\begin{array}{c} 68.08\\ 64.61\\ 67.18\\ 46.69\\ 75.82\\ 56.19\\ 64.45\\ 67.47\\ 37.80\\ 41.10\\ 73.05\\ 62.11\\ 73.05\\ 62.11\\ 73.05\\ 62.51\\ 38.94\\ 45.38\\ 57.39\\ 75.39\\ 75.35\\ 57.88\\ 9.76\\ 71.65\\ 72.55\\ 57.88\\ \end{array}$	$\begin{array}{c} 31.37\\ 34.96\\ 32.41\\ 52.84\\ 43.00\\ 34.98\\ 32.03\\ 61.96\\ 58.37\\ 26.41\\ 87.19\\ 25.23\\ 35.81\\ 53.70\\ 41.93\\ 23.62\\ 28.01\\ 26.94\\ 41.66\end{array}$	$\begin{array}{c} 0.55\\ 0.43\\ 0.47\\ 0.39\\ 0.81\\ 0.57\\ 0.57\\ 0.58\\ 0.54\\ 0.70\\ 0.68\\ 0.42\\ 7.25\\ 0.97\\ 0.68\\ 0.39\\ 0.59\\ 0.34\\ 0.46\\ \end{array}$
2090 2091	110-24-F 165-32-F	34.88 36.60	64.52 61.98	0.60	51.66 55.00	48.03 44.32	0.31 0.68	57.23 67.47	41.93 31.79	0.84 0.74

TABLE 34.

HEAT BALANCE-BRITISH THERMAL UNITS.

	Physics 1	B.t.u.	B.t.u. Loss Per Pound of Coal as Fired								
Test No.	Laboratory Designation	sorbed by Boiler per lb. of Coal as Fired	Due to Mois- ture in Coal	Due to Mois- ture in Air	Due to Hydro- gen in Coal	Due to Escap- ing Gases	Due to Incom- plete Com- bustion	Due to Com- bustible in Front- end Cinders	Due to Com- bustible in Stack Cinders	Due to Com- bustible in Ash	Due to Radia- tion, and Unac- counted- for
	CodeItem	851	852	853	854	855	856	857	858	860	869
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2026 2027	$\begin{array}{c} 138 - 16 - F \\ 193 - 20 - F \\ 138 - 24 - F \\ 138 - 32 - F \\ 193 - 32 - F \\ 193 - 32 - F \\ 83 - 16 - F \\ 83 - 32 - F \\ 138 - 40 - F \\ 138 - 40 - F \\ 138 - 40 - F \\ 110 - 16 - F \\ 110 - 24 - F \end{array}$	7007 6376 6618 6435 5532 5638 6531 7812 7269 7239 7269 7239 7560 6521 6231 6231 7560 75317 8637 7278 8637	143 163 150 122 126 144 153 130 141 140 154 133 174 146 162 162	46 57 77 78 75 64 68 64 68 64 62 22 34 19 18 26 29	491 542 522 542 532 518 490 512 510 532 409 412 419 419 419 418	1691 3688 3525 2698 2171 2323 2213 2220 2211 1786 1811 1336 1942 1928 1908	$\begin{array}{c} 0 \\ 0 \\ 30 \\ 47 \\ 22 \\ 0 \\ 15 \\ 106 \\ 106 \\ 124 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	27 11 7 7 4 8 9 24 11 16 28 4 4 28 4 4 28 31 15	368 882 681 1036 1272 1243 662 175 377 618 362 370 1039 1856 181 408 661	116 61 187 184 81 355 250 209 168 162 182 476 267 264 210 415 267	1194 -821 -896 -821 713 826 87 -50 268 93 1003 711 1297 -345 85
2028 2029 2030 2031 2032 2033 2034 2035 2037	55-32-F 110-32-F 165-24-F 83-40-F 165-32-F 110-48-F 193-40-F 110-40-F	7113 6414 6793 6299 5822 6289 5045 5900 5813	157 157 138 220 171 180 168 186 185	30 33 40 33 35 36 39 39 39	414 410 429 388 411 405 405 403 413	1812 1512 1566 1360 1431 1400 1347 1707 1400	0 0 96 0 0 0 0 0	16 10 10 5 19 3 7 4 9	457 1068 1127 1188 794 1519 1736 1191 1599	270 376 280 240 326 241 386 379 347	808 968 993 91 467 1180 738 889
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	7482 6356 5180 5716 6774 5231 5306 7180	154 152 160 185 175 179 177 170	18 22 18 20 22 16 17 21	383 402 417 416 405 426 427 391	1622 1478 1271 1455 1557 1299 1408 1474	0 38 45 0 154 156 0	29 13 6 5 2 4 3	173 900 1941 1477 719 1838 1961 515	411 269 261 258 283 225 187 321	$ \begin{array}{r} -231 \\ 762 \\ 1396 \\ 974 \\ 662 \\ 1471 \\ 551 \\ 236 \\ \end{array} $
2012 2073 2074 2075 20175 20175 20177 20178 2089 2081 2082 2083 2084 2085 2088 2085 2088 2085 2088 2088 2088	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 55-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 220-24-F\\ 165-40-F\\ 165-40-F\\ 165-40-F\\ 110-48-F\\ 55-24-F\\ 110-16-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 110-56-F\\ 55-48-F\\ 55-48-F$	5793 6511 5978 7249 4920 6812 6152 5851 7297 7501 4658 66298 4998 7016 7142 7220 6173 4202 6152 4736 5666 7307	169 175 148 166 205 165 172 113 1665 172 160 175 160 175 160 151 147 167 192 182 188 190 158	19 21 28 22 22 22 28 29 20 23 26 26 26 26 26 26 25 14 15 21 23	$\begin{array}{c c} 505\\ 516\\ 529\\ 507\\ 508\\ 549\\ 512\\ 511\\ 545\\ 507\\ 508\\ 549\\ 511\\ 545\\ 5510\\ 510\\ 496\\ 476\\ 528\\ 522\\ 530\\ 517\\ 505\\ \end{array}$	1638 1568 1981 1352 1765 1982 2121 1468 1676 1782 1566 1755 1750 1725 1517 1207 1475 1207 1475 1187 1282 1656	56 229 69 74 29 0 0 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 2 13 16 16 16 16 16 13 16 19 14 26 9 18 8 14 7 10 11 10 20 24	1664 1042 1372 4277 540 11322 1361 193 1619 2034 613 1746 590 2634 613 1746 590 2659 2551 1292 2551 1292 2551 1292 2551	157 261 266 154 283 221 185 502 315 324 448 304 369 363 379 3863 379 3863 379 3853 214 3260 515 315	824 1061 478 1059 941 932 1573 527 358 1902 824 628 628 628 543 543 543 543 543 543 543 543 543 543
2090 2091	110-24-F 165-32-F	7026 6443	152 174	25	508	1524	26	31	1399	447 461	627

TABLE 35.

		Per cent of Heat of Coal as Fired									
Test No.	Laboratory Designation	Absorb- ed by Boiler	To Mois- ture in Coal	To Mois- ture in Air	To Hydro- gen in Coal	To Escap- ing Gases	To Incom- plete Com- bustion	To Com- bustible in Front- end Cinders	To Com- bustible in Stack Cinders	To Com- bustible in Ash	To Radia- tion, and Unac- counted for
	CodeItem	881	882	883	884	885	886	887	888	890	899
2009 2010 2012 2013 2014 2015 2016 2017 2028 2029 2022 2022 2022 2022 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 193-20-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-32-F\\ 83-16-F\\ 83-16-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 193-32-F\\ 138-40-F\\ 155-24-F\\ 110-32-F\\ 110-32-F\\ 110-32-F\\ 165-32-F\\ 110-32-F\\ 110-40-F\\ 110-40-F\\ \end{array}$	$\begin{array}{c} 63.2\\ 58.2\\ 60.7\\ 849.9\\ 51.4\\ 61.7\\ 69.9\\ 61.7\\ 69.9\\ 64.7\\ 67.8\\ 60.6\\ 58.6\\ 49.8\\ 59.1\\ 64.2\\ 58.6\\ 59.7\\ 63.4\\ 59.7\\ 63.4\\ 59.7$	$\begin{array}{c} \textbf{1.3}\\ \textbf{1.5}\\ \textbf{1.4}\\ \textbf{1.1}\\ \textbf{1.1}\\ \textbf{1.3}\\ \textbf{1.4}\\ \textbf{1.2}\\ \textbf{1.3}\\ \textbf{1.3}\\ \textbf{1.6}\\ \textbf{1.3}\\ \textbf{1.6}\\ \textbf{1.5}\\ \textbf{1.5}\\ \textbf{1.5}\\ \textbf{1.5}\\ \textbf{1.4}\\ \textbf{1.2}\\ \textbf{2.2}\\ \textbf{2.2}\\ \textbf{1.6}\\ \textbf{1.7}\\ \textbf{1.6}\\ \textbf{1.7}\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.8}\\$	0.4 0.5 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.4	4.4 5.0 4.8 4.9 4.8 4.7 4.6 4.6 4.7 4.8 3.9 3.7 3.8 3.9 3.7 3.8 3.8 3.9 3.7 3.8 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.9 3.8 3.9 3.8 3.9 3.8 3.8 3.9 3.8 3.9 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	15.3 33.7 32.3 31.5 24.4 19.8 21.9 19.8 20.3 19.8 16.6 17.0 12.5 17.3 18.0 17.2 16.4 13.8 13.7 13.8 13.7 13.3 13.1 16.2	$\begin{array}{c} 0.0\\ 0.0\\ 0.3\\ 0.4\\ 0.2\\ 0.0\\ 0.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0$	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 3.3\\ 8.3\\ 8.1\\ 6.3\\ 9.3\\ 11.5\\ 11.3\\ 6.3\\ 1.6\\ 3.4\\ 5.5\\ 3.2\\ 3.4\\ 9.8\\ 17.4\\ 1.6\\ 3.8\\ 17.4\\ 1.6\\ 3.8\\ 9.9\\ 9.9\\ 12.0\\ 16.8\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3$	$\begin{array}{c} 1.1\\ 0.6\\ 1.7\\ 0.7\\ 3.2\\ 2.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.6\\ 4.4\\ 2.5\\ 1.9\\ 3.9\\ 2.4\\ 2.4\\ 3.4\\ 2.5\\ 2.4\\ 3.6\\ 3.6\\ \end{array}$	$\begin{array}{c} 10.8\\ -7.5\\ -8.2\\ -7.4\\ -7.5\\ -8.2\\ -7.4\\ -7.5\\ -8.2\\ -0.8\\ -0.4\\ -2.5\\ 0.8\\ -0.4\\ -2.5\\ 0.8\\ -0.8\\ -0.8\\ -3.1\\ -$
2037 2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	74.5 61.4 48.5 54.2 63.9 48.3 50.1 69.6	$1.5 \\ 1.5 \\ 1.5 \\ 1.8 \\ 1.7 $	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3.8 3.9 3.9 3.9 3.9 3.8 3.9 4.0 3.8	16.2 14.3 11.9 13.8 14.7 12.0 13.3 14.3	0.0 0.0 0.4 0.4 0.0 1.4 1.5 0.0	$\begin{array}{c} 0.3\\ 0.1\\ 0.1\\ 0.0\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$ \begin{array}{c} 1.7\\ 8.7\\ 18.2\\ 14.0\\ 6.8\\ 17.0\\ 18.5\\ 5.0\\ \end{array} $	4.1 2.6 2.5 2.4 2.7 2.1 1.8 3.1	$ \begin{array}{c} -2.3 \\ 7.4 \\ 13.1 \\ 9.2 \\ 6.3 \\ 13.6 \\ 5.2 \\ 2.3 \\ \end{array} $
2072 2078 2074 2075 2075 2077 2080 2080 2080 2082 2083 2083 2085 2086 2085 2086 2088 2088 2089 2093 2094 2095 2099	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 110-24-F\\ 110-16-F\\ 55-24-F\\ 110-16-F\\ 165-16-F\\ 110-48-F\\ 155-40-F\\ 155-40-F\\ 110-48-F\\ 110-16-F\\ 220-16-F\\ 220-16-F\\ 110-56-F\\ 110-56-F\\ 110-56-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 58.9\\ 53.5\\ 65.5\\ 461.8\\ 56.7\\ 50.2\\ 65.3\\ 66.9\\ 41.9\\ 60.7\\ 46.8\\ 63.5\\ 64.6\\ 63.8\\ 57.0\\ 43.8\\ 57.0\\ 43.8\\ 57.6\\ 67.6\\ \end{array}$	1.6 1.3 1.5 1.9 1.6 1.0 1.5 1.4 1.6 1.5 1.4 1.4 1.4 1.5 1.8 1.5 1.8 1.5	$\begin{array}{c} 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{c} 4.7\\ 4.7\\ 4.6\\ 4.9\\ 4.6\\ 4.7\\ 4.6\\ 4.6\\ 4.6\\ 4.6\\ 4.8\\ 4.6\\ 4.5\\ 4.9\\ 4.6\\ 4.5\\ 4.9\\ 4.9\\ 4.9\\ 4.7\end{array}$	14.8 14.0 17.9 12.8 16.0 15.0 17.7 18.9 13.2 15.3 14.6 15.8 15.9 14.5 15.9 14.5 11.1 13.7 11.0 12.0 15.3	$\begin{array}{c} 0.5\\ 2.1\\ 0.7\\ 0.3\\ 0.0\\ 1.3\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 9.4\\ 12.3\\ 3.9\\ 20.4\\ 4.9\\ 10.4\\ 11.7\\ 1.5\\ 18.3\\ 5.6\\ 16.3\\ 2.4\\ 5.3\\ 2.6\\ 5.7\\ 28.5\\ 1200\\ 22.3\\ 19.2\\ 120\\ 22.3\\ 19.2\\ 5.2\end{array}$	$\begin{array}{c} 2.4\\ 2.4\\ 1.4\\ 2.0\\ 1.7\\ 4.8\\ 3.2\\ 2.9\\ 4.1\\ 2.8\\ 3.3\\ 3.5\\ 3.2\\ 2.0\\ 3.0\\ 5.0\\ 2.9\end{array}$	7.4 9.5 4.3 10.0 8.5 8.6 13.5 4.7 3.2 17.1 7.6 12.7 7.2 5.0 5.6 16.8 7.3 10.4 7.9 2.4
2090	110-24-F	63.3	1.4	0.2	4.6	13.7	0.2	0.3	6.6 12.8	4.0	5.6 4.1

HEAT BALANCE-PERCENTAGE.

TABLE 36.

INFORMATION CONCERNING THE INDICATOR DIAGRAMS SHOWN IN FIG. 56, 57, and 58.

Diagram No.	Right or Left Side	Head or Crank End	Test No.	Laboratory Designation	Nominal Speed, M. P. H.	Speed, R. P. M.
1	R	H	2086	55-24-F	10	51.3
2	R	C H	11	11	"	"
4	Ľ	Ĉ		**	"	**
5	R	H	2077	110-24-F	20	110.7
6	R	C	"	**	**	**
8	L	н С	,,	"	**	"
9	R	H	2083	165-16-F	30	170.3
10	R	C	**	13	**	22
11	Ľ	п С	"	"	"	**
13	R	H	2088	220-16-F	40	234.2
14	R L	H	"	"	,,,	**
16	Ĺ	ĉ	"	"	"	"
17	R	H	2095	55-48-F	10	51.3
18	R. L	H	. ,,	"	"	
20	Ĺ	Ō	"	**	"	"
21	R	H	2084	110-48-F	20	110.4
22	R	U H	"	"	"	**
24	Ľ	Ĉ	"	"	"	**
25	R	H	2093	165-48-F	30	167.4
26	R	U H	,,	11	**	**
28	Ľ	Ö	"	"	"	"
29	R	Н	2089	220-40-F	40	230.7
30	L	H	"	"	"	,,
32	L	O	"	"	33	"
33	R	H	2028	55-32-F	10	50.3
34	R L	U H	"	"	"	"
36	Ľ	Ö	"	"	"	"
37	R	H	2029	110-32-F	20	109.8
38	R. L	H	"	"	"	"
40	Ĩ	Ö	"	"	"	"
41	R	H	2030	165-24-F	3,0	169.4
43	L	H	"	"	"	"
44	L	C	"	"	"	
45	R	H	2034	193-40-F	3,5	198.5
47	L	H	**	**		"
48	L	C	,	"		33

FIG. 56. REPRESENTATIVE INDICATOR DIAGRAMS FOR SERIES 2. For Data, See Table 36.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

FIG. 57. REPRESENTATIVE INDICATOR DIAGRAMS FOR SERIES 2. For Data, See Table 36.

ILLINOIS ENGINEERING EXPERIMENT STATION

FIG. 58. REPRESENTATIVE INDICATOR DIAGRAMS FOR SERIES 1. For Data, See Table 36.

118

APPENDIX 5.

METHODS OF CALCULATION.

Appendix 5 presents in detail the methods of calculation used in determining all results except for those items whose determination is self-evident.

The Marks and Davis steam tables for saturated and superheated steam have been used in all calculations pertaining to the properties of steam.

The events of the stroke and the corresponding pressures were determined for each indicator diagram by inspection and measurement. Horse power calculations were made, in like manner, for each indicator diagram. The values tabulated in Appendix 4 are averages of the determinations made from the individual diagrams.

Methods of estimating the ultimate analyses for the individual coal samples and of estimating the calorific values for the samples of ash and cinders have been presented in Appendix 4 in the consideration of Test Methods.

Item 318. Constant for dynamometer horse power.

Item 19	
33 000	

Item 319.	Constant for indicated horse power. Right, head end.
	.000001983 \times (Item 68)² \times Item 77
Item 320.	Constant for indicated horse power. Right, crank end.
•	$.000001983 \times [$ (Item 68) ² — (Item 135) ²] \times Item 77

Item 321. Constant for indicated horse power. Left, head end. .000001983 \times (Item 69)² \times Item 78

- 120 ILLINOIS ENGINEERING EXPERIMENT STATION
- Item 322. Constant for indicated horse power. Left, crank end. .000001983 \times [(Item 69)² — (Item 136)² \times Item 78
- Item 332. Constant for piston displacement. Right, head end. $229.17 \times$ Item 319
- Item 333. Constant for piston displacement. Right, crank end. $229.17 \times \text{Item } 320$
- Item 334. Constant for piston displacement. Left, head end. $229.17 \times \text{Item } 321$
- Item 335. Constant for piston displacement. Left, crank end. $229.17 \times$ Item 322
- Item 352. Average revolutions per minute. $\frac{\text{Item 351}}{60 \times \text{Item 345}}$
- Item 353. Equivalent speed, miles per hour.

$$\frac{\text{Item 352} \times \text{Item 19}}{88}$$

Item 354. Equivalent piston speed in feet per minute.

Item
$$352 \times \left[\frac{\text{Item 77 + Item 78}}{12}\right]$$

Item 388. Barometric pressure in laboratory. The observed value has been corrected for the expansion of the mercury and brass by means of the formula:

 $H = h_1 [1.0026 - 0.000091 t_1].$

This method is in accordance with that of the United States Weather Bureau as described in Bulletin No. 472, page 29.

Item 407. Quality of steam, average. Quality of steam in the dome has been determined by means of a throttling calorimeter and the formula:

$$x_{o} = \frac{H_{o} + 0.47 \times [t_{s} - t_{o}] - q_{o}}{r}$$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

 $x_{o} =$ quality of steam

- $t_s = observed$ temperature in calorimeter
- $t_{o} =$ temperature of saturated steam at pressure in calorimeter
- $q_{o} =$ heat of liquid due to boiler pressure
- $H_{o} =$ total heat of dry steam at calorimeter pressure
- $r_{o} =$ latent heat of dry steam due to boiler pressure

Item 412. Factor of correction for quality of steam.

 $\frac{q+xr-h}{q+r-h}$

- q = heat of liquid due to average boiler pressure
- h = heat of liquid due to average feed water temperature
- x = quality of steam, average
- r = latent heat of dry steam due to average boiler pressure.

Item 419. Total pounds of dry coal fired.

Item
$$418 \times \left[\frac{100 - \text{Item } 440}{100}\right]$$

Item 420. Total pounds of combustible by analysis.

Item
$$418 \times \left[\frac{100 - (\text{Item } 440 + \text{Item } 441)}{100}\right]$$

Item 421. Total pounds of ash by analysis.

Item
$$418 \times \left[\frac{\text{Item } 441}{100}\right]$$

Item 424. Total pounds of front end and stack cinders. Item 422 + Item 423.

Item 435. Pounds of moisture per pound of dry air has been obtained from item 368, item 369, and the psychrometric chart and formula described by W. H. Carrier in the November, 1911, Journal of the American Society of Mechanical Engineers.

122 ILLINOIS ENGINEERING EXPERIMENT STATION

Item 458. Calorific value of dry coal in B.t.u. per pound.

$$\left[\frac{\text{Item 443}}{100 - \text{Item 440}}\right] \times 100$$

Item 459. Calorific value of combustible in B.t.u. per pound.

 $\left[\frac{\text{Item 443}}{100 - [\text{Item 440} + \text{Item 441}]}\right] \times 100$

Item 478. Correction for change of water level and pressure in the boiler from start to close of test has been calculated by the formula:

$$\frac{W_i \ [q+xr-q_i]-W_t \ [q+xr-q_t]}{q+xr-h}$$

 $W_1 =$ initial weight of water in the boiler, pounds $W_f =$ final weight of water in the boiler, pounds q =heat of liquid due to average boiler pressure x =quality of steam, average

- r = latent heat of dry steam due to average boiler pressure
- $q_i = \text{heat of liquid at start of test}$
- $q_{\rm f} =$ heat of liquid at close of test
- h = heat of liquid due to average feed water temperature

Item 480. Total hot water losses, corrected, pounds.

Item 479 ×
$$\left[\frac{xr}{q+xr-h}\right]$$

Item 481. Water delivered to boiler and presumably evaporated, pounds.

Item 476 — Item 480 + Item 478

Item 626. Dry coal fired per hour, pounds.

Item 419 Item 345 LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE 123

Item 627. Dry coal fired per hour per square foot of grate surface, pounds.

Item 626 Item 252

- Item 633. Moist steam evaporated per hour, pounds. Item 481 Item 345
- Item 634. Dry steam evaporated per hour, pounds. Item $633 \times \text{Item } 412$
- Item 635. Dry steam evaporated per hour per square foot of heating surface, pounds.

Item 634 Item 275

Item 636. Dry steam evaporated per pound of dry coal, pounds.

Item 634 Item 626

Item 637. Dry steam evaporated per pound of coal as fired, pounds.

Item $634 \div \begin{bmatrix} \text{Item } 418 \\ \hline \text{Item } 345 \end{bmatrix}$

Item 639. Dry steam to engine per hour, pounds.

[Item 476 + Item 477 - Item 479 - Item 638]

 $\times \left[\frac{\text{Item 412}}{\text{Item 345}} \right]$

Item 641. Factor of evaporation.

$$\frac{q+xr-h}{970.4}$$

124 ILLINOIS ENGINEERING EXPERIMENT STATION

Item 642. Dry steam loss per hour due to calorimeter, leaks, corrections, etc., pounds.

Item 634 — Item 639

- Item 642. Dry coal loss per hour equivalent to steam loss, pounds. <u>Item 642</u> <u>Item 636</u>
- Item. 645. Equivalent evaporation per hour from and at 212°F., pounds.

Item $633 \times$ Item 641.

Item 648. Equivalent evaporation per hour per square foot of total heating surface, pounds.

Item 645 Item 275

Item 656. Equivalent evaporation per hour per square foot of grate surface, pounds.

> Item 645 Item 252

Item 657. Equivalent evaporation per hour per pound of coal as fired, pounds.

Item $645 \div \left[\frac{\text{Item } 418}{\text{Item } 345}\right]$

Item 658. Equivalent evaporation per hour per pound of dry coal, pounds.

Item 645 Item 626

Item 659. Equivalent evaporation per hour per pound of combustible, pounds.

Item $645 \div \left[\frac{\text{Item } 420}{\text{Item } 345} \right]$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

Item 660. Boiler horse power.

 $\frac{\text{Item } 645}{34.5}$

- Item 666. Efficiency of the boiler, per cent. $\frac{\text{Item } 657 \times 970.4 \times 100}{\text{Item } 443.}$
- Item 697. Number of expansions, right, head end. $\frac{\text{Item 510} + \text{Item 86}}{\text{Item 495} + \text{Item 86}}$
- Item 698. Number of expansions, right, crank end. $\frac{\text{Item 511} + \text{Item 87}}{\text{Item 496} + \text{Item 87}}$
- Item 699. Number of expansions, left, head end. $\frac{\text{Item 512} + \text{Item 88}}{\text{Item 497} + \text{Item 88}}$
- Item 700. Number of expansions, left, crank end. Item 513 + Item 89 Item 498 + Item 89
- Item 734. Dry coal used by engine per indicated horse power per hour, pounds.

 $\begin{bmatrix} Item 639 \\ Item 636 \end{bmatrix} \div Item 711$

- Item 735. B.t.u. in dry coal per indicated horse power per hour. Item $734 \times$ Item 458
- Item 736. Dry steam per indicated horse power per hour, pounds. <u>Item 639</u> <u>Item 711</u>

- 126 ILLINOIS ENGINEERING EXPERIMENT STATION
- Item 737. B.t.u. in steam above 32°F. per indicated horse power per hour. Item $736 \times [q+r]$
- Item 743. Drawbar horse power. Item $318 \times \text{Item } 352 \times \text{Item } 487$
- Item 744. Dry coal per drawbar horse power per hour, pounds.

 $\left[\frac{\text{Item } 639}{\text{Item } 636}\right] \div \text{Item } 743$

- Item 745. Dry steam per drawbar horse power per hour, pounds. <u>Item 639</u> <u>Item 743</u>
- Item 746. B.t.u. per drawbar horse power per hour. Item $744 \times \text{Item } 458$
- Item 752. Dry coal per million foot pounds at drawbar, pounds.

 $\left[\frac{\text{Item } 639}{\text{Item } 636}\right] \div \text{Item } 750$

- Item 753. Dry steam per million foot pounds at drawbar, pounds. Item 639 Item 750
- Item 754. B.t.u. per million foot pounds at drawbar. Item $752 \times \text{Item } 458$
- Item 755. Indicated horse power per square foot of heating surface.

 $\left[\frac{\text{Item 711}}{\text{Item 275}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

Item 756. Indicated horse power per square foot of grate surface.

$$\left[\frac{\text{Item 711}}{\text{Item 252}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 757. Drawbar horse power per square foot of heating surface.

$$\left[\frac{\text{Item 743}}{\text{Item 275}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 758. Drawbar horse power per square foot of grate surface.

$$\left[\frac{\text{Item 743}}{\text{Item 252}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 764. Tractive force based on mean effective pressure, pounds.

$$\left[\frac{33\ 000}{\text{Item\ 19}}\right] \times \left[\frac{\text{Item\ 711}}{\text{Item\ 352}}\right]$$

Item 770. Machine friction of the locomotive in terms of horse power. Item 711 — Item 743

Item 771. Machine friction of the locomotive in terms of mean effective pressure, pounds.

 $\frac{\text{Item 770}}{\text{Item 352} \times [\text{Item 319} + \text{Item 320} + \text{Item 321} + \text{Item 322}]}$

Item 772. Machine friction of the locomotive in terms of drawbar pull, pounds.

$$\begin{bmatrix} 33\ 000 \\ \hline \text{Item } 19 \end{bmatrix} \times \begin{bmatrix} \text{Item } 770 \\ \hline \text{Item } 352 \end{bmatrix}$$

Item 773. Machine friction of the locomotive in per cent of indicated horse power.

$$\left[\frac{\text{Item 770}}{\text{Item 711}}\right] \times 100$$

Item 778. Machine efficiency of the locomotive, per cent.

 $\left[\frac{\text{Item 743}}{\text{Item 711}}\right] \times 100$

ILLINOIS ENGINEERING EXPERIMENT STATION

Item 779. Efficiency of the locomotive, per cent.

254 655.8 Item 746

Constant 254 655.8 = $\left[\frac{33\ 000 \times 60}{777.52}\right] \times 100$

Item 785. Ratio of total weight of the locomotive to the maximum indicated horse power.

Item 63 Item 721

Item 786. Ratio of total heating surface to maximum indicated horse power.

Item 275 Item 721

Item 851. B.t.u. absorbed by the boiler per pound of coal as fired. Item 657×970.4

Items 852, 853, 854, 855, and 856 see next page.

Item 857. B.t.u. loss due to combustible in front-end cinders.

 $\frac{\text{Item } 422 \times \text{Item } 461}{\text{Item } 418}$

Item 858. B.t.u. loss due to combustible in stack cinders.

 $\frac{\text{Item } 423 \times \text{Item } 462}{\text{Item } 418}$

Item 860. B.t.u. loss due to combustible in ash.

 $\frac{\text{Item } 428 \times \text{Item } 463}{\text{Item } 418}$

Item 869. B.t.u. loss due to radiation and unaccounted-for. Item 443—[Item 851 +Item 852 + Item 853+ Item 854 + Item 855+ Item 856 + Item 857 + Item 858 + Item 860]

128

Item 852. B.t.u. loss per pound of coal as fired due to moisture in the coal.

$$\frac{\text{Item } 440}{100} \times \left[(211 - \text{Item } 368) + 970.4 + 0.47 \times (\text{Item } 367 - 211) \right]$$

B.t.u. loss per pound of coal as fired due to moisture in the air. Item 853.

$$\begin{bmatrix} [\text{Item 418} \times \text{Item 449}] - [\text{Item 428} \times \text{Item 831}] - [\text{Item 422} \times \text{Item 841}] - [\text{Item 423} \times \text{Item 846}] \\ \text{Item 468} + \text{Item 467} \end{bmatrix} \times \begin{bmatrix} 0.47 \times (\text{Item 367} - \text{Item 368}) \end{bmatrix} \times \text{Item 435} \\ \times \begin{bmatrix} 3.032 \times \text{Item 469} \\ \text{Item 468} + \text{Item 467} \end{bmatrix} \times \begin{bmatrix} 0.47 \times (\text{Item 367} - \text{Item 368}) \end{bmatrix} \times \text{Item 435} \\ \text{Item 454} & \text{B.t.u. loss per pound of coal as fired due to hydrogen in the coal.} \\ 9 \times \begin{bmatrix} \frac{1}{16m} \frac{450}{100} \end{bmatrix} \times \begin{bmatrix} (211 - \text{Item 368}) + 970.4 + 0.47 \times (\text{Item 367} - 211) \end{bmatrix} \\ \text{Item 855} & \text{B.t.u. loss per pound of coal as fired due to escaping gases.} \\ \text{Item 855} & \text{B.t.u. loss per pound of coal as fired due to escaping gases.} \\ \begin{bmatrix} [16m 418 \times \text{Item 449}] - [11em 428 \times \text{Item 831}] - [11em 422 \times \text{Item 841}] - [\text{Item 423} \times \text{Item 846}] \end{bmatrix} \times \\ \begin{bmatrix} [4 \times \text{Item 466} + 700 \\ 3 \times [\text{Item 466} + \text{Item 467}] \end{bmatrix} \times \begin{bmatrix} 0.24 \times [\text{Item 367} - \text{Item 368}] \end{bmatrix} \\ \end{bmatrix}$$

 \lceil [Item 418 × Item 449] – [Item 428 × Item 831] – [Item 422 × Item 841] – [Item 423 × Item 846] Item 856. B.t.u. loss per pound of coal as fired due to incomplete combustion.

$$\left[\frac{\text{Item 467}}{\text{Item 468} + \text{Item 467}}\right] \times 10\,150$$

I tem 418×100

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

129

X

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. None arailable. Circular No. 1.

High-Speed Tool Steels, by L. P. Breckenridge. 1905. None available. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge 1905. None available. Bulletin No. 2. and Henry B. Dirks.

and Henry B. Dirks. 1905. None available.
 Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. None available.
 Circular No. 3. Fuel Tests with Illinois Coal (Compiled from tests made by the Technologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907),
 by L. P. Breckenridge and Paul Discrens. 1909. Thirty cents.
 Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by
 L. P. Breckenridge. 1006 News englishing the statistical statis statistical statistical statistical statistical statistical

Bulletin No. 5. L. P. Breckenridge. 1906. None avauaoue. Bulletin No. 4. Tests of Reinforced Concrete Beams, Series vi Talbot. 1906. Forty-five cents. Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman and M. L. Carr. Bulletin No. 3.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr, and Henry B. Dirks. 1906. None available. Bulletin No. 8. Tests of Concrete: I, Shear; II, Bond, by Arthur N. Talbot. 1906

None available.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906. Revised Edition 1912.

Fifty cents. Jo. 10. Tests of Concrete and Reinforced Concrete Columns. Series of 1906, Falbot. 1907. None available. Bulletin No. 10. by Arthur N. Talbot. Bulletin No. 11. 1907. None available. The Effect of Scale on the Transmission of Heat Through Locomotive

Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. None arailable. Bulletin No. 12. Tests of Reinforced Concrete T-Beams, Series of 1906, by Arthur N.

Talbot. 1907. None available.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907. None available. Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Bulletin No. 13.

ot. 1907. None Bulletin No. 15. Talbot. None available.

How to Burn Illinois Coal Without Smoke, by L. P. Breckenridge. 1908.

Bulletin No. 10. ANNI 10. EXAMPLE 10. Trusses, by N. Clifford Ricker. 1908. Fifteen cents. Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908. Fifteen cents. Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F. eler. 1908. None arailable. Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore. Wheeler.

Bulletin No. 18. 1908. Forty cents.

Bulletin No. 19. Bulletin No. 19. Bulletin No. 20. by Arthur N. Talbot. Comparative Tests of Carbon, Metallized Carbon and Tantalum Fila-

Amrine. 1908. None arailable. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, 1908. None arailable.

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. B. Fifteen cents. Bulletin No. 22. 1908.

Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908. None available. Bulletin No. 23. Voids, Settlement, and Weight of Crushed Stone, by Ira O. Baker.

 Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation,
 *Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation,
 by S. W. Parr and C. K. Francis. 1908. Thirty cents.
 Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine, Bulletin No. 26.

High Steam Pressures in Loconiotive Service. A Review of a Report balatti, N. 10. Infan Jersen Trease in V. F. M. Goss, 1908. Twenty-five cents. Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909. Twenty-five cents.
 Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N.

albot and Dun A. A. Test of Three Large Reinforced Concrete Beams: Resistance to Web Stresses, Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, by Talbot.

Series of 1907 and 1908, by Arthur N. Talbot. 1909. Forty-five cents. *Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams, and C. N. Haskins. 1909. Twenty-five cents. *Bulletin No. 31. Fuel Tests with House-heating Boilers, by J. M. Snodgrass. 1909.

Fifty-five cents. Bulletin No. 32.

The Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909. Fifteen cents.

Bulletin No. 33. Tests of Tungsten Lamps, by T. H. Amrine and A. Guell. 1909. Twenty cents. *Bulletin

Tests of Two Types of Tile Roof Furnaces under a Water-Tube No 34. A Study of Base and Bearing Plates for Columns and Beams, by Boiler, by J. M. Snodgrass. Bulletin No. 35. A S

Bulletin No. 35. A Study of Dase and Etching Theorem at High Temperatures, by *Bulletin No 86. The Thermal Conductivity of Fire-Clay at High Temperatures, by J. K. Clement and W. L. Egy. 1909. Twenty cents. Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F. Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F.

Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F. eler. 1909. Thirty-five cents. *Bulletin No. 38. The Weathering of Coal, by S. W. Parr and W. F. Wheeler. 1909.

Twenty-five cents. 1909. *Bulletin No. 39. Tests of Washed Grades of Illinois Coal, by C. S. McGovney. Seventy-five cents.

*A limited number of copies of those bulletins which are starred are available for free distribution.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 40. A Study in Heat Transmission, by J. K. Clement and C. M. Garland,

1910. Ten cents. *Bulletin No. 41. Tests of Timber Beams, by Arthur N. Talbot. 1910. Twenty cents. *Bulletin No. 42. The Effect of Keyways on the Strength of Shafts, by Herbert F.

Bulletin No. 43. Freight Train Resistance, by Edward C. Schmidt. 1910. Seventufive cents.

five cents. Bulletin No. 44. An Investigation of Built-up Columns Under Load, by Arthur N. Talbot and Herbert F. Moore. 1911. Thirty-five cents. *Bulletin No. 45. The Strength of Oxyacetylene Welds in Steel, by Herbert L. Whitte-more. 1911. Thirty-five cents. *Bulletin No. 46. The Spontaneous Combustion of Coal, by S. W. Parr and F. W. Kressmann. 1911. Forty-five cents. *Bulletin No. 47. Magnetic Properties of Heusler Alloys, by Edward B. Stephenson.

*Builetin No. 21. Inspande for Flow Through Locomotive Water Columns, by Arthur 1911. Twenty-five cents. *Builetin No. 48. Resistance to Flow Through Locomotive Water Columns, by Arthur N. Talbot and Melvin L. Enger. 1911. Forty cents. *Builetin No. 49. Tests of Nickel-Steel Riveted Joints, by Arthur N. Talbot and Herbert F. Moore. 1911. *Bulletin No. 50.

Tests of a Suction Gas Producer, by C. M. Garland and A. P. Kratz.

1912. Fifty cento. *Bulletin No. 51. Street Lighting, by J. M. Bryant and H. B. Hake. 1912. Thirtyfive cents. *Bulletin No.

52. An Investigation of the Strength of Rolled Zinc, by Herbert F. Moore. 1912. Fifteen cents.

*Bulletin No. 53. Inductance of Coils, by Morgan Brooks and H. M. Turner. 1912. Forty cents. *Bulletin No. 54.

Mechanical Stresses in Transmission Lines, by A. Guell. 1912. Twenty cents. *Bulletin No. 55.

*Bulletin No. 55. Starting Currents of Transformers, with Special Reference to Trans-formers with Silicon Steel Cores, by Trygve D. Yensen. 1912. Twenty cents. *Bulletin No. 56. Tests of Columns: An Investigation of the Value of Concrete as Reinforcement for Structural Steel Columns, by Arthur N. Talbot and Arthur R. Lord. 1912.

Twenty-five cents. *Bulletin No. 57.

Twenty-five cents.
*Bulletin No. 57. Superheated Steam in Locomotive Service. A Review of Publication No. 127 of the Carnegie Institution of Washington, by W. F. M. Goss. 1912. Forty cents.
*Bulletin No. 58 A New Analysis of the Cylinder Performance of Reciprocating Engines, by J. Paul Clayton. 1912. Sixty cents.
*Bulletin No. 59. The Effect of Cold Weather Upon Train Resistance and Tonnage Rating, by Edward C. Schmidt and F. W. Marquis. 1912. Twenty cents.
*Bulletin No. 60. The Coking of Coal at Low Temperatures, with a Preliminary Study of the By-Products, by S. W. Parr and H. L. Olin. 1912. Twenty-five cents.
*Bulletin No. 61. Characteristics and Limitations of the Series Transformer, by A. R. Anderson and H. R. Woodrow. 1913. Twenty-five cents.
Bulletin No. 62. The Electron Theory of Magnetism, by Elmer H. Williams. 1913.

Bulletin No. 62. The Electron Theory of Magnetism, by Elmer H. Williams. 1910. Thirty-five cents. *Bulletin No. 63. Entropy-Temperature and Transmission Diagrams for Air, by C. R. Richards. 1913. Twenty-five cents. *Bulletin No. 64. Tests of Reinforced Concrete Buildings Under Load, by Arthur N. Talbot and Willis A. Slater. 1913. Fifty cents. *Bulletin No. 65. The Steam Consumption of Locomotive Engines from the Indicator Diagrams, by J. Paul Clayton. 1913. Forty cents. Bulletin No. 66. The Properties of Saturated and Superbeated Ammonia Vapor, by G. A. Goodenough and William Earl Mosher. 1913. Fifty cents. Bulletin No. 67. Reinforced Concrete Wall Footings and Column Footings, by Arthur N. Talbot. 1913. Fifty cents. *Bulletin No. 68. Strength of I-Beams in Flexure, by Herbert F. Moore, 1913. Twenty-cents.

cents. *Bulletin No. 69. Coal Washing in Illinois, by F. C. Lincoln. 1913. Fifty cents. Bulletin No. 70. The Mortar-Making Qualities of Illinois Sands, by C. C. Wiley. 1913.

Bulletin No. 71. Tests of Bond between Concrete and Steel, by Duff A. Abrams. 1914. One dollar.

*Bulletin No. 72. Magnetic and Other Properties of Electrolytic Iron Melted in Vacuo, by Trygve D. Yensen. 1914. Forty cents. *Bulletin No. 73. Acoustics of Auditoriums, by F. R. Watson. 1914. Twenty cents. *Bulletin No. 74. The Tractive Resistance of a 28-Ton Electric Car, by Harold H. Dunn. 1914. Twenty-five cents. Bulletin No. 75. Thermal Properties of Steam, by G. A. Goodenough. 1914. Thirty-

five cents.

five cents. *Bulletin No. 76. The Analysis of Coal with Phenol as a Solvent, by S. W. Parr and H. F. Hadley. 1914. Twenty-five cents. *Bulletin No. 77. The Effect of Boron upon the Magnetic and Other Properties of Electrolytic Iron Melted in Vacuo, by Trygve D. Yensen. 1915. Ten cents. *Bulletin No. 78. A Study of Boiler Losses, by A. P. Kratz. 1915. Thirty-five cents. *Bulletin No. 79. The Coking of Coal at Low Temperatures With Special Reference to the Properties and Composition of the Products, by S. W. Parr and H. L. Olin. 1915. Temperty five cents

Twenty-five cents.
 *Bulletin No. 80 Wind Stresses in the Steel Frames of Office Buildings, by W. M.
 Wilson and G. A. Maney. 1915. Fifty cents.
 *Bulletin No. 81. Influence of Temperature on the Strength of Concrete, by A. B.
 McDaniel. 1915. Fifteen cents.
 *Builtin No. 82. Laboratory Tests of a Consolidation Locomotive, by E. C. Schmidt,

*Bulletin No. 82. Laboratory Tests of a Consolidation J. M. Snodgrass, and R. B. Keller. 1915. Sixty-five cents.

*A limited number of copies of those bulletins which are starred are available for free distribution.

THE UNIVERSITY OF ILLINOIS THE STATE UNIVERSITY URBANA

EDMUND J. JAMES, Ph. D., LL. D., President

THE UNIVERSITY INCLUDES THE FOLLOWING DEPARTMENTS:

The Graduate School

- The College of Liberal Arts and Sciences (Ancient and Modern Languages and Literatures; History, Economics and Accountancy, Political Science, Sociology; Philosophy, Psychology, Education; Mathematics; Astronomy; Geology; Physics; Chemistry; Botany, Zoology, Entomology; Physiology; Art and Design)
- The College of Engineering (Architecture; Architectural, Ceramic, Civil, Electrical, Mechanical, Mining, Municipal and Sanitary, and Railway Engineering)
- The College of Agriculture (Agronomy; Animal Husbandry; Dairy Husbandry; Horticulture and Landscape Gardening; Veterinary Science; Agricultural Extension; Teachers' Course; Household Science)
- The College of Law (Three years' course)
- The School of Education
- The Courses in Business (General Business; Banking; Accountancy; Bailway Administration; Insurance; Secretarial; Commercial Teachers')
- The Course in Journalism
- The Courses in Chemistry and Chemical Engineering
- The School of Railway Engineering and Administration
- The School of Music (Voice, Piano, Violin; four years' course)
- The School of Library Science (two years' course)
- The College of Medicine (in Chicago)
- The College of Dentistry (in Chicago)
- The School of Pharmacy (in Chicago; Ph.G. and Ph.C. courses)
- The Summer Session (eight weeks)
- Experiment Stations: U. S. Agricultural Experiment Station; Engineering Experiment Station; State Laboratory of Natural History; State Entomologist's Office; Biological Experiment Station on Illinois River; State Water Survey; State Geological Survey; Mine Rescue Station.
- The library collections contain (July 1, 1915) 414,365 volumes, including the library of the State Laboratory of Natural History (8,100 volumes), the Quine Medical Library (14,000 volumes), and the library of the School of Pharmacy (2,000 volumes)

For catalogs and information address

THE REGISTRAE Urbana, Illinois

UNIVERSITY OF CALIFORNIA LIBRARY, BERKELEY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

Books not returned on time are subject to a fine of 50c per volume after the third day overdue, increasing to \$1.00 per volume after the sixth day. Books not in demand may be renewed if application is made before expiration of loan period.

FEB 23 1324

10m-12,'23

Gaylord Bros. Makers Syracuse, N. Y. PAT. JAN. 21, 1908

